Description
小胡同学是个热爱运动的好孩子。
每天晚上,小胡都会去操场上跑步,学校的操场可以看成一个由n 个格子排成的一个环形,格子按照顺时针顺序从0 到n - 1 标号。
小胡观察到有m 个同学在跑步,最开始每个同学都在起点(即0 号格子),每个同学都有个步长ai,每跑一步,每个同学都会往顺时针方向前进ai 个格子。由于跑道是环形的,如果
一个同学站在n - 1 这个格子上,如果他前进一个格子,他就会来到0。
他们就这样在跑道上上不知疲倦地跑呀跑呀。小胡同学惊奇地发现,似乎有些格子永远不会被同学跑到,他想知道这些永远不会被任何一个同学跑到的格子的数目,你能帮帮他
吗?(我们假定所有同学都跑到过0 号格子)。
Input
第一行两个整数n,m。
接下来一行有m 个正整数,代表a1; a2…am
Output
输出一个整数,代表永远不会被同学跑到的格子的数目。
Sample Input
6 1
2
Sample Output
3
Data Constraint
对于30% 的数据,1<=n<=100
对于60% 的数据,1<=n<=10^6
对于100% 的数据,1<=n<=10^9; 1<=m<=50; 1<=ai<=n
.
.
.
.
.
分析
.
.
.
.
.
程序:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int a[100];
int gcd(int a,int b)
{
if (b==0) return a; else return gcd(b,a%b);
}
int phi(int x)
{
int ans=x,n=x;
for (int i=2;i<=((int)sqrt(n));i++)
if (x%i==0)
{
ans=ans/i*(i-1);
while (x%i==0) x/=i;
}
if (x>1) ans=ans/x*(x-1);
return ans;
}
int main()
{
freopen("running.in","r",stdin);
freopen("running.out","w",stdout);
int n,m;
scanf("%d%d",&n,&m);
for (int i=1;i<=m;i++)
scanf("%d",&a[i]);
int ans=0;
for (int d=1;d<=((int)sqrt(n));d++)
if (n%d==0)
{
for (int i=1;i<=m;i++)
if (d%gcd(a[i],n)==0)
{
ans+=phi(n/d);
break;
}
for (int i=1;i<=m;i++)
if ((n/d)%gcd(a[i],n)==0)
{
ans+=phi(d);
break;
}
}
printf("%d",n-ans);
fclose(stdin);
fclose(stdout);
return 0;
}