Description
ztxz16旅游归来后十分疲倦,很快就进入了梦中。
在梦中ztxz16结婚生子了,他不得不照顾小宝宝。但这实在太无聊了,于是ztxz16会在散步。梦中ztxz16住在一个类似数轴的街上,数轴上的每个整点是一个街区,每个单位时间内ztxz16可以选择向左走一个街区或者向右走一个街区,但如果他离开家超过m个单位时间小宝宝会有危险,因此ztxz16必须在距离上次在家中不超过m个单位时间内回到家中。
n个单位时间后ztxz16会醒来,他希望此时正好在家中。
ztxz16想知道散步过程可能有多少种不同的散步过程。两个散步过程被认为不同,当且仅当存在至少一个单位时刻ztxz16选择的走向不同。
Input
第一行输入两个整数n, m。
Output
输出可能的散步过程数%1000000007。
Sample Input
输入1:
4 2
输入2:
10 6
Sample Output
输出1:
4
输出2:
184
Data Constraint
对于30%的数据:2<=n<=100, 2<=m<=100
对于100%的数据:2<=n<=10^9, 2<=m<=100
n和m均为偶数
.
.
.
.
.
.
分析
用f[i]代表i时刻回到家中的方案有多少种,观察发现转移可以写成矩阵的形式,于是可以矩阵乘法快速幂转移
.
.
.
.
.
.
程序:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,m,r[101][101],f[101][101],ans[101][101],mo=1000000007,t[101][101];
void jzcf(int a[101][101],int b[101][101])
{
memset(t,0,sizeof(t));
for (int i=1;i<=m;i++)
for (int j=1;j<=m;j++)
for (int k=1;k<=m;k++)
t[i][j]=((long long)a[i][k]*b[k][j]%mo+t[i][j]+mo)%mo;
for (int i=1;i<=m;i++)
for (int j=1;j<=m;j++)
a[i][j]=t[i][j];
}
void work(int x)
{
if (x==0) return;
if (x%2==0)
{
work(x/2);
jzcf(ans,ans);
} else
{
work(x-1);
jzcf(ans,f);
}
}
int main()
{
scanf("%d%d",&n,&m);
r[1][1]=1;
for (int i=1;i<=m-1;i++)
for (int j=1;j<=m/2;j++)
{
r[i+1][j+1]=(r[i+1][j+1]+r[i][j])%mo;
r[i+1][j-1]=(r[i+1][j-1]+r[i][j])%mo;
}
m/=2;
for (int i=1;i<=m;i++)
f[1][i]=2*r[i*2][0]%mo;
for (int i=2;i<=m;i++)
f[i][i-1]=1;
for (int i=1;i<=m;i++)
ans[i][i]=1;
work(n/2);
printf("%d",ans[1][1]);
return 0;
}