自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(251)
  • 资源 (16)
  • 收藏
  • 关注

原创 cuDNN v7.6.5 (November 5th, 2019), for CUDA 10.1)下载链接

https://developer.nvidia.com/compute/machine-learning/cudnn/secure/7.6.5.32/Production/10.1_20191031/cudnn-10.1-windows10-x64-v7.6.5.32.zip

2020-10-13 11:17:32 443

原创 openpose安装使用教程

1.下载最新gpu版本的openposehttps://github.com/CMU-Perceptual-Computing-Lab/openpose/releases/tag/v1.6.02.下载项目,打开model文件夹,双击getModels.bat文件下载模型。3.在项目内打开cmd控制台输入命令bin\OpenPoseDemo.exe --video examples\media\video.avi查看效果...

2020-10-03 18:02:06 153 1

原创 带有信任门的时空LSTM,用于三维人体动作识别

https://arxiv.org/pdf/1607.07043.pdfWhy?1.基于人类动作分析3D骨架数据——由于其简洁、健壮性和视图不变表示的特点变得流行!2.创意:提出了一种更强大的基于树结构的遍历方法。3.性能最先进How?时空复发性网络的提出和实现1.LSTM适合学习在一个序列的时间数据。2.骨骼数据的序列特性同样适合rnnn的学习在空间领域。然后将递归分析由时间域扩展到空间域,以发现每帧不同节点之间的空间依赖模式。在空间方向上,框架中的身体关节按顺序馈

2020-10-01 22:25:04 32

原创 行为识别模型action-recognition-master解读

1.dataset.py用于下载需要使用的数据集hmdb51:import requestsimport osimport globdef download_file(URL, destination): session = requests.Session() response = session.get(URL, stream = True) save_response_content(response, destination) def save

2020-10-01 21:09:09 41

原创 torch.autograd.Variable(target.cuda(async=True)) ---用async调用cuda()出现 SyntaxError: invalid syntax

直接把cuda(async=true)中的async=true去掉即可。

2020-09-27 11:22:18 267

原创 Java面试题2

1.JavaSE基础(32) 遍历数组的3种方式?第一种:for循环第二种:增强for循环foreach第三种:利用jdk自带的方法 --> java.util.Arrays.toString()2.JAVA中循环遍历list有三种方式?JAVA中循环遍历list有三种方式for循环、增强for循环(也就是常说的foreach循环)、iterator遍历。3.面向对象特征有哪些方面?1. 封装,隐藏内部实现,只暴露公共行为2. 继承,提高代码的重用性3. 多态,体.

2020-09-24 23:46:31 117

原创 Java面试题

1. java中wait和sleep有什么区别?多线程条件下如何保证数据安全?wait会释放锁,线程时交互sleep会持有锁,用于暂停执行2.spring主要使用了哪些?IOC实现原理是什么?AOP实现原理是什么?spring主要功能有IOC,AOP,MVC。IOC实现原理:先反射生成实例,然后调用时主动注入。AOP原理:主要使用java动态代理3.mybatis与hibernate?都是轻量级ORM框架。hibernate实现功能比较多,通过HQL操作数据库,比较简..

2020-09-24 19:52:06 165

原创 python批量删除文件名的前几个字符

1.创建一个记事本文件并更改后缀名为.bat2.写入:@echo offsetlocal enabledelayedexpansion ::批量去掉文件名前N个字符,如果有文件夹会搜索文件夹下的每个文件进行修改set /p format=请输入需要操作的文件格式:set /p deletenum=请输入需要删除文件名前多少个字符:for /r %%i in (.) do ( for /f "delims=" %%a in (' dir /b "%%i\*.%format%" 2

2020-09-21 16:03:44 171 2

原创 Human3.6M数据集下载

# Download H36M annotations mkdir data cd data wget http://visiondata.cis.upenn.edu/volumetric/h36m/h36m_annot.tar tar -xf h36m_annot.tar rm h36m_annot.tar # Download H36M images mkdir -p h36m/images cd h36m/images wget http://visiondata.cis.upenn.edu/volu

2020-09-21 15:45:33 325

原创 TypeError: unsupported operand type(s) for +: ‘NoneType‘ and ‘str‘

把对应文件夹里面_int_.py文件删除就好了。。。

2020-09-20 00:21:35 24

原创 智能数字图像处理之FastRCNN(pytorch)代码解读之faster_rcnn_framework.py

class FasterRCNNBase(nn.Module):广义R-CNN的主要类。参数:支柱(nn.Module):项(nn.Module):roi_heads (n . module):从RPN获取特性+建议并计算探测/遮罩。转换(n . module):执行从输入到feed的数据转换该模型def __init__(self, backbone, rpn, roi_heads, transform):-》参数重新赋值給变量 super(FasterRCNNBase, se...

2020-09-19 23:05:31 114 1

原创 智能数字图像处理之FastRCNN(pytorch)代码解读之my_dataset.py

def __init__(self, voc_root, transforms, train_set=True):-》voc_root训练集所在根目录,transforms预处理方法,train_set boolean变量 self.root = os.path.join(voc_root, "VOCdevkit", "VOC2012") self.img_root = os.path.join(self.root, "JPEGImages")-》图像根目录 ...

2020-09-19 22:35:39 111 1

原创 智能数字图像处理之FastRCNN(pytorch)代码解读之spilt_data.py

这是一个脚本生成train.txt等txt文件1.files_path = "./VOCdevkit/VOC2012/Annotations"-》记住文件路径2.if not os.path.exists(files_path): print("文件夹不存在") exit(1)-》检测路径存不存在3.val_rate = 0.5-》验证集比例4.files_name = sorted([file.split(".")[0] for file in os.listdir(fil...

2020-09-19 21:35:13 39

原创 智能数字图像处理之FastRCNN(pytorch)代码解读之predict.py

解读create_model方法:1.backbone = resnet50_fpn_backbone()-》默认使用resnet50_fpn_model的resnet50_fpn_backbone方法2. model = FasterRCNN(backbone=backbone, num_classes=num_classes)-》调用FasterRCNN建立模型3.device = torch.device("cuda:0" if torch.cuda.is_available() e..

2020-09-19 21:02:42 123

原创 智能数字图像处理之FastRCNN(pytorch)代码解读之train_mobilenet.py

首先看一下系统架构:解读create_model方法1.backbone = MobileNetV2(weights_path="./backbone/mobilenet_v2.pth").features-》加载MobileNetV2预训练模型 backbone.out_channels = 1280-》设置输出通道2.anchor_generator = AnchorsGenerator(sizes=((32, 64, 128, 256, 512),), ...

2020-09-17 22:29:08 97 1

原创 智能数字图像处理之FastRCNN(pytorch)代码解读之train_resnet50_fpn.py

解读create_model方法1.num_classes:分类数2.backbone = resnet50_fpn_backbone() model = FasterRCNN(backbone=backbone, num_classes=91)-》调用faster_rcnn_framework的FasterRCNN方法,传入分类数num_classes为91

2020-09-17 18:30:05 283

原创 计算机视觉知识点之RCNN/Fast RCNN/Faster RCNN

Rcnn第一步:输入图像,采用Selective Search 从原始图片中提取2000个左右区域候选框第二步:划分区域提案,进行归一化:将所有候选框变为固定大小的(227*227)区域,对每个候选区域,使用深度网络提取特征第三步:CNN网络提取特征 送入每一类的SVM分类器,判别是否属于该类第四步:NMS(非极大值抑制)区域边框,采用DPM精修边框的位置先模型输入为一张图片,然后在图片上提出了约2000个待检测区域,然后这2000个待检测区域一个一个地(串联方式)通过卷积...

2020-09-17 16:46:04 68

原创 计算机视觉知识点之COCO数据集和pytorch

COCO数据集方面:COCO数据集现在有3种标注类型:1, object instances(目标实例), 2, object keypoints(目标上的关键点), 3, image captions(看图说话)使用JSON文件存储。每种类型又包含了训练和验证,所以共6个JSON文件。Object Instance 类型的标注格式1,整体JSON文件格式数据集中的instances_train2017.json、instances_val2017.json这两个文件就.

2020-09-17 16:36:21 72

原创 《机器学习》实战之分类

1.k-means优点:精度高,对异常值不敏感,无数据输入假定缺点:计算复杂度高,空间复杂度高适用范围:数值型和标称型最近的邻居输入:inX:与现有数据集进行比较的向量(1xN)数据集:大小m已知向量的数据集(NxM)标签:数据集标签(1xM向量)k:用于比较的邻居的数量(应该是奇数)输出:最流行的类标签创建数据集和标签:def createDataSet(): group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])...

2020-09-17 13:19:17 30

原创 智能数字图像处理:图卷积SGN代码(pytorch)之main.py解读

1.os.environ["CUDA_VISIBLE_DEVICES"] = '0'->目的:使用CUDA环境变量CUDA_VISIBLE_DEVICES来限定CUDA程序所能使用的GPU设备.2.parser = argparse.ArgumentParser(description='Skeleton-Based Action Recgnition')-》创建解析器,使用 argparse 的第一步是创建一个 ArgumentParser 对象。fit.add_fit_args(parser

2020-09-15 15:51:40 247

原创 智能数字图像处理:图卷积SGN代码(pytorch)之fit.py和util.py解读

fit.py作用:解析器:argparse.ArgumentParser返回一个添加了fit所需参数的解析器args = parser.add_argument_group('Training', 'model training')-》对命令行参数进行概念型分组。 args.add_argument('--network', type=str, help='the neural network to use')-》用于命令项选项与参数解析的模块...

2020-09-15 14:00:31 34

原创 智能数字图像处理:图卷积SGN代码(pytorch)之data.py解读

解读NTUDataset类:定义3个方法:初始化方法,求长度方法,求x,y索引def __init__(self, x, y): self.x = x self.y = np.array(y, dtype='int') def __len__(self): return len(self.y) def __getitem__(self, index): return [self.x[index], int(self....

2020-09-13 18:30:35 113

原创 智能数字图像处理:图卷积SGN代码(pytorch)之model.py解读

1.self.dim1 = 256 self.dataset = dataset self.seg = seg num_joint = 25-》关节数为252.if args.train: self.spa = self.one_hot(bs, num_joint, self.seg)-》独热编码 self.spa = self.spa.permute(0, 3, 2, 1).cuda()-》转置 ...

2020-09-13 17:51:09 170

原创 智能数字图像处理:图卷积SGN代码(pytorch)之get_raw_denoised_data.py解读

1.root_path = './'raw_data_file = osp.join(root_path, 'raw_data', 'raw_skes_data.pkl')save_path = osp.join(root_path, 'denoised_data')-》载入上一个文件处理后的.pkl文件路径2.if not osp.exists(save_path): os.mkdir(save_path)-》如果保存路径不存在则创建此路径3.rgb_ske_path = osp.jo..

2020-09-13 16:18:27 72

原创 智能数字图像处理:图卷积SGN代码(pytorch)之seq_transformation.py解读

1.加载前面处理的各种文件路径root_path = './'stat_path = osp.join(root_path, 'statistics')setup_file = osp.join(stat_path, 'setup.txt')camera_file = osp.join(stat_path, 'camera.txt')performer_file = osp.join(stat_path, 'performer.txt')replication_file = osp.join(s

2020-09-13 16:14:20 57

原创 成功解决Windows MemoryError: Unable to allocate 6.38 GiB for an array with shape (38

因为运行文件所在的磁盘分配内存不够问题造成的,解决方法如下:打开我的电脑-右键属性-高级-性能设置-选择高级-更改-点击E盘-点击自定义大小-设置分配内存,我选择6G,6144kb.点击确定完成,再次运行文件,问题解决!...

2020-09-12 19:00:06 3085 1

原创 智能数字图像处理:图卷积SGN代码(pytorch)之get_raw_denoised_data.py解读

1.root_path = './'raw_data_file = osp.join(root_path, 'raw_data', 'raw_skes_data.pkl')save_path = osp.join(root_path, 'denoised_data')-》载入上一个文件处理后的.pkl文件路径2.if not osp.exists(save_path): os.mkdir(save_path)-》如果保存路径不存在则创建此路径3.rgb_ske_path = osp...

2020-09-11 20:09:11 67

原创 智能数字图像处理:图卷积SGN代码(pytorch)之get_raw_skes_data.py解读

主目录:data文件夹目录:首先介绍main函数1. skes_path = './nturgb+d_skeletons/' stat_path = osp.join(save_path, 'statistics')-》定义数据集路径,准备传参。2. if not osp.exists('./raw_data'): os.makedirs('./raw_data')-》如果不存在raw_data这个文件夹的话,递归创建目录raw_data3....

2020-09-11 19:12:26 24

原创 论文翻译:混合维在庞加莱几何三维骨架的动作识别

Graph Convolutional Networks (GCNs)已经展示了其对不规则数据(如人体动作识别中的骨骼数据)建模的强大能力,这提供了一种令人兴奋的新方法,为居住在图中不同部分的节点融合丰富的结构信息。在人类动作识别中,现有的研究引入了动态图形生成机制,以更好地捕捉隐含的语义骨架连接,从而提高了识别性能。在本文中,我们提供了一种正交的方法来探索底层连接。而不是引入昂贵的动态。我们认为这是一个更适合对图数据进行建模的空间,可以使提取的表示与嵌入矩阵相匹配。具体来说,我们提出了一种新的时空GCN

2020-09-11 11:48:31 44

原创 智能数字图像处理:MobileNetV2代码(pytorch)之train.py解读

1.net = MobileNetV2(num_classes=5)-》实例化模型2.torch.load()函数载入预训练模型。3.pre_dict = {k: v for k, v in pre_weights.items() if "classifier" not in k}-》遍历权重字典,看是否有classifier整个参数,如果不在层名称当中则进行一个保存。4.missing_keys, unexpected_keys = net.load_state_dict(pre_dict,

2020-09-10 14:44:54 88

原创 智能数字图像处理:MobileNetV2代码(pytorch)之model.py解读

1. def __init__(groups=1):-》group=1表示是普通卷积,group=2表示Depthwise(DW)卷积。2.padding = (kernel_size - 1) // 2-》padding由kernel_size来决定。3.然后定义网络结构:super(ConvBNReLU, self).__init__( nn.Conv2d(in_channel, out_channel, kernel_size, stride, padding, ...

2020-09-10 12:58:36 81

原创 智能数字图像处理:ResNet代码(pytorch)之train.py解读

导入pytorch官方的预训练模型:from model import resnet34, resnet101载入预训练模型方法:model_weight_path = "./resnet34-333f7ec4.pth"missing_keys, unexpected_keys = net.load_state_dict(torch.load(model_weight_path), strict=False)# for param in net.parameters():# par..

2020-09-10 00:37:45 43

原创 智能数字图像处理:ResNet代码(pytorch)之model.py解读

涉及到迁移学习:

2020-09-09 23:32:05 93

原创 智能数字图像处理:VGGNet代码(pytorch)之train.py解读

唯一与其他模型的train.py不同的是VGGNet有一个实例化模型的方法,即能选择model.py中不同的模型进行实例化再训练。model_name = "vgg16"net = vgg(model_name=model_name, num_classes=5, init_weights=True)net.to(device)loss_function = nn.CrossEntropyLoss()optimizer = optim.Adam(net.parameters(), lr=0.00

2020-09-09 16:00:41 102

原创 智能数字图像处理:VGGNet代码(pytorch)之model.py解读

1.self.features = nn.Sequential():精简模块代码,提高复用。放入conv层代码或者全连接层代码。2.分类层classifier:Dropout层:nn.Dropout(p=0.5)-》随机损失一半权重参数全连接层:nn.Linear(128 * 6 * 6, 2048),-》输入128通道的6*6图像,连接层节点个数为2048个ReL激活层:nn.ReLU(inplace=True),-》减少计算量,防止梯度消失。Dropout层:nn.Dr...

2020-09-09 15:51:26 92

原创 数字图像处理:GoogleNet代码(pytorch)之train.py解读

解释顺序就是代码阅读顺序训练数据集处理:1.device = torch.device()->调用GPU还是CPU进行训练2.传入参数其实是一个判断函数:cuda:0" if torch.cuda.is_available() else "cpu"-》如果有GPU使用GPU进行计算训练,否则使用CPU。3.预处理函数:transforms.Compose()4.transforms.RandomResizedCrop(224)-》随机裁剪,裁剪到224x224大小。5.tran

2020-09-09 10:58:40 125

原创 数字图像处理:GoogleNet代码(pytorch)之model.py解读

GoogleNet网络结构:1.首先定义一个基本卷积模块包含一个卷积层和一个Relu激活层和一个正向传播函数。class BasicConv2d(nn.Module): def __init__(self, in_channels, out_channels, **kwargs): super(BasicConv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels,...

2020-09-09 01:42:33 86

原创 数字图像处理:AlexNet代码(pytorch)之train.py解读

解释顺序就是代码阅读顺序训练数据集处理:1.device = torch.device()->调用GPU还是CPU进行训练2.传入参数其实是一个判断函数:cuda:0" if torch.cuda.is_available() else "cpu"-》如果有GPU使用GPU进行计算训练,否则使用CPU。3.预处理函数:transforms.Compose()4.transforms.RandomResizedCrop(224)-》随机裁剪,裁剪到224x224大小。5.tran

2020-09-08 20:24:54 91 1

原创 数字图像处理:AlexNet代码(pytorch)之model.py解读

首先看一下网络架构:非常简单的一个训练文件,一个测试文件,一个模型文件。模型结构图:亮点(2012):缺点:1.model.py对照表:self.features = nn.Sequential():精简模块代码,提高复用。放入conv层代码或者全连接层代码。第一层:Conv1-》nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2), 卷积核大小=11,卷积核个数=48,RGB图像:3通道...

2020-09-08 17:43:15 101

原创 使用tensorflow预测轨迹

import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt#使用numpy随机生成200个随机点x_data = np.linspace(-0.5,0.5,200)[:,np.newaxis]noise = np.random.normal(0,0.02,x_data.shape)y_data = np.square(x_data)+noise#定义两个placeholderx=tf.placehol.

2020-08-24 16:53:22 90

models.zip

人脸识别-年龄性别模型

2020-06-06

opencv_traincascade.exe

计算机视觉

2020-04-09

opencv_createsamples.exe

计算机视觉

2020-04-09

haarcascade_frontalface_alt.xml

用于人脸识别xml文件

2020-04-09

haarcascade_frontalface_default.xml

用于人脸识别的xml文件

2020-04-09

时序数据处理之给股票收盘价添加时间戳对应数据文件.csv

时序数据处理之给股票收盘价添加时间戳对应数据文件

2019-12-16

RNN生成古诗词

RNN生成古诗词

2019-12-12

股票管理系统.zip

股票交易系统,一个main函数直接全部搞定,好用又便宜!!!!!!

2019-12-12

VirtualBoxSDK-5.2.32-132073.zip

VirtualBoxSDK-5.2.32-132073VirtualBoxSDK-5.2.32-132073虚拟机

2019-08-26

Navicat_Premium_11.0.10-MySQL客户端

Navicat_Premium_11.0.10

2019-04-26

oracle客户端

oracle客户端

2019-04-26

android第一行代码

android第一行代码

2019-04-14

vc6精简版[中文版]

精简了一些附件工具,帮助文档. 用做学习和开发基本够用了,因为它照样包含了sdk和mfc的库. 再加上sdk是可以单独安装和升级的,只要在vc6里设置好包含目录和库目录即可.

2018-09-06

apache-tomcat-7.0.57

Apache是普通服务器,本身只支持html即普通网页。不过可以通过插件支持php,还可以与Tomcat连通(单向Apache连接Tomcat,就是说通过Apache可以访问Tomcat资源。反之不然)。Apache只支持静态网页,但像php,cgi,jsp等动态网页就需要Tomcat来处理。 Tomcat是由Apache软件基金会下属的Jakarta项目开发的一个Servlet容器,按照Sun Microsystems提供的技术规范,实现了对Servlet和JavaServer Page(JSP)的支持,并提供了作为Web服务器的一些特有功能,如Tomcat管理和控制平台、安全域管理和Tomcat阀等。由于Tomcat本身也内含了一个HTTP服务器,它也可以被视作一个单独的Web服务器。但是,不能将 Tomcat 和 Apache Web 服务器混淆,Apache Web Server 是一个用 C 语言实现的 HTTP web server;这两个 HTTP web server 不是捆绑在一起的。Apache Tomcat 包含了一个配置管理工具,也可以通过编辑 XML 格式的配置文件来进行配置。Apache,nginx,tomcat并称为网页服务三剑客,可见其应用度之广泛。

2018-09-06

Navicat_Premium_11.0.10

简单好用,Navicat premium是一款数据库管理工具,是一个可多重连线资料库的管理工具,它可以让你以单一程式同时连线到 MySQL、SQLite、Oracle 及 PostgreSQL 资料库,让管理不同类型的资料库更加的方便。

2018-09-06

hibernate-3.2源码

hibernate-3.2源码,需要的朋友可以拿去。对需要深入理解的人有作用。 第一次上传资源,请多多指教!有大神路过愿意给小弟资源的华请留下qq,大恩不言谢!!!

2017-09-20

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除