【洛谷P2051】中国象棋【dp】

题目:

题目链接:https://www.luogu.org/problem/P2051
这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法。大家肯定很清楚,在中国象棋中炮的行走方式是:一个炮攻击到另一个炮,当且仅当它们在同一行或同一列中,且它们之间恰好 有一个棋子。你也来和小可可一起锻炼一下思维吧!


思路:

显然每一行每一列最多只能有两个棋子。
所以设 f [ i ] [ j ] [ k ] f[i][j][k] f[i][j][k]表示前 i i i行,有 j j j列放了一个棋子,有 k k k列放了两个棋子的方案数。
那么对于第 i i i行,有以下五种转移方式:

  1. 不放置棋子
  2. 放一个棋子在没有棋子的列
  3. 放一个棋子在原本已经有一个棋子的列
  4. 放两个棋子在原本都没有棋子的列
  5. 放两个棋子分别在没有棋子的列和有一个棋子的列
  6. 放两个棋子分别在两个已有一个棋子的列

注意每次转移都要乘上一个组合数。
时间复杂度 O ( n m 2 ) O(nm^2) O(nm2)


代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;

const int N=110,MOD=9999973;
ll ans,f[N][N][N];
int n,m; 

ll C(int x,int y)
{
	return x*(x-1)/2;
}

int main()
{
	scanf("%d%d",&n,&m);
	f[0][0][0]=1;
	for (int i=1;i<=n;i++)
		for (int j=0;j<=m;j++)
			for (int k=0;j+k<=m;k++)
			{
				f[i][j][k]=f[i-1][j][k];
				if (j>=1) f[i][j][k]=(f[i][j][k]+f[i-1][j-1][k]*(m-j-k+1))%MOD;
				if (k>=1) f[i][j][k]=(f[i][j][k]+f[i-1][j+1][k-1]*(j+1))%MOD;
				if (j>=2) f[i][j][k]=(f[i][j][k]+f[i-1][j-2][k]*C(m-j-k+2,2))%MOD;
				if (k>=1) f[i][j][k]=(f[i][j][k]+f[i-1][j][k-1]*j*(m-j-k+1))%MOD;
				if (k>=2) f[i][j][k]=(f[i][j][k]+f[i-1][j+2][k-2]*C(j+2,2))%MOD;
			}
	for (int i=0;i<=m;i++)
		for (int j=0;i+j<=m;j++)
			ans=(ans+f[n][i][j])%MOD;
	printf("%lld",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值