【CF103D】Time to Raid Cowavans

题目

题目链接:https://codeforces.com/problemset/problem/103/D
给一个序列 a a a m m m 次询问,每次询问给出 t , k t, k t,k 。求 a t + a t + k + a t + 2 k + ⋯ + a t + p k a_t + a_{t+k}+a_{t+2k}+\cdots+a_{t+pk} at+at+k+at+2k++at+pk 其中 t + p k ≤ n t+pk \leq n t+pkn t + ( p + 1 ) k > n t+(p+1)k > n t+(p+1)k>n
n , m ≤ 300000 , a i ≤ 1 0 9 n,m \leq 300000,a_i \leq 10^9 n,m300000,ai109

思路

一眼题吧。
考虑一个阈值 t t t,对于 k ≤ t k\leq t kt 的询问, O ( t n ) O(tn) O(tn) 预处理出来然后 O ( 1 ) O(1) O(1) 回答,对于 k > t k>t k>t 的询问,直接 O ( n t ) O(\frac{n}{t}) O(tn) 回答。
t = n ≈ 350 t=\sqrt{n}\approx 350 t=n 350,时间复杂度为 O ( m n ) O(m\sqrt{n}) O(mn )。把询问离线一下就可以做到空间复杂度 O ( n ) O(n) O(n)

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

const int N=301000,M=550;
int n,m,a[N];
ll sum[N],ans[N];

struct node
{
	int x,y,id;
}b[N];

bool cmp(node x,node y)
{
	return x.y<y.y;
}

int main()
{
	scanf("%d",&n);
	for (int i=1;i<=n;i++)
		scanf("%d",&a[i]);
	scanf("%d",&m);
	for (int i=1;i<=m;i++)
	{
		scanf("%d%d",&b[i].x,&b[i].y);
		b[i].id=i;
	}
	sort(b+1,b+1+m,cmp);
	for (int i=1;i<=m;i++)
		if (b[i].y<=M)
		{
			if (b[i].y!=b[i-1].y)
				for (int j=n;j>=1;j--)
					sum[j]=sum[j+b[i].y]+a[j];
			ans[b[i].id]=sum[b[i].x];
		}
		else
		{
			for (int j=b[i].x;j<=n;j+=b[i].y)
				ans[b[i].id]+=a[j];
		}
	for (int i=1;i<=m;i++)
		printf("%lld\n",ans[i]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值