【洛谷P1939】【模板】矩阵加速(数列)

题目大意:

题目链接:https://www.luogu.org/problemnew/show/P1939
f 1 = f 2 = f 3 = 1 , f n = f n − 3 + f n − 1 f_1=f_2=f_3=1,f_n=f_{n-3}+f_{n-1} f1=f2=f3=1,fn=fn3+fn1。求 f n f_n fn


前言

这篇博客并不是专门来介绍矩阵乘法加速递推的。
但是既然是模板题就提一下吧。


什么是矩阵乘法?

下面是来自度娘的解释:
在这里插入图片描述

在这里插入图片描述
也就是说,对于两个矩阵 A A A B B B,在满足第一个矩阵的列数=第二个矩阵的行数时,这两个矩阵就可以相乘。那么假设 A A A m × p m\times p m×p的矩阵, B B B p × n p\times n p×n的矩阵,那么他们相乘得到的矩阵 C C C就是一个 m × n m\times n m×n的矩阵。
而且对于矩阵 C C C的任意元素 i j _{ij} ij,都等于矩阵A第i行的所有数字分别乘上矩阵B第j列的所有数字之和。(其实就是上图的公式)


矩阵乘法和递推的关系?

矩阵乘法和递推关系最密切的例子就是斐波那契数列了。↓
矩 阵 乘 法 求 斐 波 那 契 数 列 矩阵乘法求斐波那契数列
现在看不懂没关系,可以慢慢理解。
我们知道,斐波那契数列有这样的定义:
f i = f i − 1 + f i − 2 f_i=f_{i-1}+f_{i-2} fi=fi1+fi2
那么如果我们有一个 2 × 2 2\times 2 2×2的矩阵,其中第一行分别是 f i − 1 f_{i-1} fi1 f i − 2 f_{i-2} fi2。我们的目标是把第一行承上一个矩阵变成 f i f_i fi f i − 1 f_{i-1} fi1。那么应该怎么办呢?
在这里插入图片描述

首先,矩阵 A A A和矩阵 C C C都含有 f i − 1 f_{i-1} fi1这一项。那么就先从这里下手。
我们知道,矩阵 C C C f i − 1 f_{i-1} fi1在第 1 1 1行第 2 2 2列。那么,根据公式,可以得到
C 1 , 2 = A 1 , 1 × B 2 , 1 + A 1 , 2 × B 2 , 2 C_{1,2}=A_{1,1}\times B_{2,1}+A_{1,2}\times B_{2,2} C1,2=A1,1×B2,1+A1,2×B2,2
也就是说
f i − 1 = f i − 1 × B 2 , 1 + f i − 2 × B 2 , 2 f_{i-1}=f_{i-1}\times B_{2,1} +f_{i-2}\times B_{2,2} fi1=fi1×B2,1+fi2×B2,2
那么很明显,我们可以得到 B 2 , 1 = 1 , B 2 , 2 = 0 B_{2,1}=1,B_{2,2}=0 B2,1=1,B2,2=0。这样可以保证进行矩阵乘法之后 C 1 , 2 C_{1,2} C1,2 f i − 1 f_{i-1} fi1
在这里插入图片描述
那么现在来看矩阵 C C C中的 f i f_i fi。我们要保证的是
C 1 , 1 = A 1 , 1 × B 1 , 1 + A 1 , 2 × B 2 , 1 C_{1,1}=A_{1,1}\times B_{1,1}+A_{1,2}\times B_{2,1} C1,1=A1,1×B1,1+A1,2×B2,1
也就是说
f i = f i − 1 × B 1 , 1 + f i − 2 × B 2 , 1 f_{i}=f_{i-1}\times B_{1,1}+f_{i-2}\times B_{2,1} fi=fi1×B1,1+fi2×B2,1

我们知道, f i = f i − 1 + f i − 2 f_i=f_{i-1}+f_{i-2} fi=fi1+fi2。所以可以得到 B 1 , 1 = 1 , B 2 , 1 = 1 B_{1,1}=1,B_{2,1}=1 B1,1=1,B2,1=1
在这里插入图片描述

那么整个矩阵 B B B都被我们求出来了。
得到了 f i f_i fi f i − 1 f_{i-1} fi1后,我们再将它乘一次矩阵 B B B,就可以得到 f i + 1 f_{i+1} fi+1 f i f_i fi,又可以得到 f i + 2 f_{i+2} fi+2 f i + 1 . . . f_{i+1}... fi+1...
这样就可以得到 f n f_n fn了。

但是!

你以为就结束了?
这样的时间复杂度是 O ( n m 2 ) O(nm^2) O(nm2),其中 n n n表示求斐波那契数列的第 n n n项, m m m表示矩阵的长宽。还不如递推。而且递推可以得到 1 1 1 n n n的所有斐波那契数,而矩阵乘法只能求第 n n n项。
其实还有个地方可以优化。
我们求 f n f_n fn的时候其实是将原矩阵 A A A乘了 n − 1 n-1 n1次矩阵 B B B的。也就是说
目 标 矩 阵 = A × B n − 1 目标矩阵=A\times B^{n-1} =A×Bn1
看到 n − 1 n-1 n1次方想到了什么?
可以用快速幂!
我们用快速幂的思想求出 B n − 1 B^{n-1} Bn1,然后再乘上一个矩阵 A A A即可。
怎么用快速幂?
其实是一个道理。只不过把矩阵 A A A乘矩阵 B B B换成矩阵 B B B乘矩阵 B B B就可以了。
那么最终的时间复杂度为 O ( m 3 l o g n ) O(m^3logn) O(m3logn)。还是很优秀的。
代 码 代码


下面进入正题。


思路:

可以发现矩阵

在这里插入图片描述

然后就是套模板了。。。


代码:

#include <cstdio>
#include <cstring>
#define MOD 1000000007
#define ll long long
using namespace std;

const ll b[4][4]=
{
	{0,0,0,0},
	{0,0,0,1},
	{0,1,0,0},
	{0,0,1,1}
};
int T,n;
ll f[4],a[4][4];


void mul(ll f[4],ll a[4][4])
{
	ll c[4];
	memset(c,0,sizeof(c));
	for (int i=1;i<=3;i++)
	 for (int j=1;j<=3;j++)
	  c[i]=(c[i]+f[j]*a[j][i])%MOD;
	memcpy(f,c,sizeof(c));
}

void mulself(ll a[4][4])
{
	ll c[4][4];
	memset(c,0,sizeof(c));
	for (int i=1;i<=3;i++)
	 for (int j=1;j<=3;j++)
	  for (int k=1;k<=3;k++)
	   c[i][j]=(c[i][j]+a[i][k]*a[k][j])%MOD;
	memcpy(a,c,sizeof(c));
}

void ask(int x)
{
	while (x)
	{
		if (x&1) mul(f,a);
		x>>=1;
		mulself(a);
	}
}

int main()
{
	scanf("%d",&T);
	while (T--)
	{
		scanf("%d",&n);
		if (n<4) 
		{
			printf("1\n");
			continue;
		}
		memcpy(a,b,sizeof(b));
		f[1]=f[2]=f[3]=1;
		ask(n-3);
		printf("%lld\n",f[3]);
	}
	return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值