1127.麦森数

题目描述

      形如 2^p−1 的素数称为麦森数,这时 p一定也是个素数。但反过来不一定,即如果 p 是个素数,2^p−1不一定也是素数。
      到1998年底,人们已找到了37个麦森数。最大的一个是 p=3021377 ,它有 909526 位。麦森数有许多重要应用,它与完全数密切相关。
  任务:输入p,计算 2^p−1的位数和最后500位数字(用十进制高精度数表示) 

输入

一个整数P(1000<=p<=310000)。
 

输出

第一行:十进制高精度数  2^p−1 的位数。
第2-11行:十进制高精度数 2^p−1的最后500位数字。(每行输出50位,共输出10行,不足500位时高位补0)
不必验证 2^p−1与p是否为素数。

输入样例 复制

1279

输出样例 复制

386
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000104079321946643990819252403273640855
38615262247266704805319112350403608059673360298012
23944173232418484242161395428100779138356624832346
49081399066056773207629241295093892203457731833496
61583550472959420547689811211693677147548478866962
50138443826029173234888531116082853841658502825560
46662248318909188018470682222031405210266984354887
32958028878050869736186900714720710555703168729087

萌新发题解,大佬勿喷。

  1. 输出位数
     分析:2^p的末位>=2,所以2^p-1的位数与2^p相等。

     10的位数是2,100是3,1000是4.则可推出对于任意一个数n

。其位数是lg(n)+1。

     c++<cmath>库中的函数log10即可解决,位数是p*log10(2)+1。

2.求后500位

 首先,p<=310000,用普通高精乘单精是绝对会TLE的。

 所以,要用一个算法:快速幂

 由数学定律可知 (a^b)^c=a^(b*c)

 则2^p=(2^2)^p/2=((2^2)^2)^p/2/2。

 当然,当p为奇数时怎么办?

 简单,用一个数在p为奇数时乘一个2,同时乘上记录((2^2)^2)……的数

 用另一个数在p不等于0时乘自己(2^2)^2……

然后只乘500位

 废话不多说,上代码:

#include<iostream>

#include<cstdio>

#include<algorithm>

#include<cmath>

#include<cstring>

using namespace std;

int m,n,k;

int a[510],b[510],c[1110];

void quick_pow(int p)

{

    int jw=0;

	while(p>0)

	{

		if(p&1)//是2进制写法,可改成 if(p%2==1) 

		{// 当p是奇数时,把b数组里的数乘到a数组里,只要500位

			jw=0;//高精乘高精,后500位

			for(int i=1;i<=500;i++)

			{

				jw=0;

				for(int j=1;j<=500;j++)

				{

					c[i+j-1]=a[i]*b[j]+c[i+j-1]+jw;

					jw=c[i+j-1]/10;

					c[i+j-1]%=10;

				}

			}

			for(int i=1;i<=500;i++) //把结果放在a数组

				a[i]=c[i];

			memset(c,0,sizeof(c));// 记住一定要清零!!!

		}

		p>>=1; //2进制写法,可改成 p/=2

                jw=0;  

		for(int i=1;i<=500;i++) //把b数组自乘一次,高精乘高精同上

		{

			jw=0;

			for(int j=1;j<=500;j++)

			{

				c[i+j-1]=b[i]*b[j]+c[i+j-1]+jw;

				jw=c[i+j-1]/10;

				c[i+j-1]%=10;

			}

		}

		for(int i=1;i<=500;i++)

			b[i]=c[i];

		memset(c,0,sizeof(c));

	}

	a[1]--;//记住要减一!!!

} 

int main()

{

	cin>>n;

	double k=log10(2);

	int wei=k*n+1;

	cout<<wei<<endl;//输出位数

	a[1]=1;

	b[1]=2;//千万不能忘了初始化!!!

	int sum=0;

	quick_pow(n);

	for(int i=500;i>=1;i--)

	{

		sum++;//计数器,为了一行输出50个

		cout<<a[i];

		/**/if(sum==50)

		{

			sum=0; //以华丽的输出结尾

			cout<<endl;

		}

	}

    return 0;

}

点一个攒呗???

### 关于洛谷 P1045 麦森 的解题思路 #### 一、问题分析 该问题的核心在于处理大整运算以及高精度计算。具体来说,给定一个素 \(P\) (\(1000 < P < 3100000\)),需要完成两部分任务: 1. **计算 \(2^P - 1\) 的位** 这可以通过学公式推导得出:对于任意正整 \(n\) 和基 \(b\) (通常为10),其位可以由 \(\lfloor \log_{10}(n) \rfloor + 1\) 计算得到[^1]。 2. **求取 \(2^P - 1\) 的最后 500 位字** 此处涉及高精度乘法操作,因为直接存储如此巨大的值是不可能的。 --- #### 二、解决方法详解 ##### 1. 计算 \(2^P - 1\) 的位 利用对性质,可以直接通过如下公式快速计算出 \(2^P - 1\) 的位: \[ D = \lfloor P \cdot \log_{10}2 \rfloor + 1 \] 其中,\(\log_{10}2\) 是常量,约等于 0.30103[^2]。因此无需实际进行幂次运算即可获得结果。 ##### 2. 获取 \(2^P - 1\) 的最后 500 位字 由于 \(2^P - 1\) 极其庞大,无法直接存入标准据类型中,需采用高精度算法模拟手工乘法过程来逐步构建目标值。以下是主要步骤: - 初始化组用于保存每一位的结果; - 使用循环迭代方式不断累加中间结果; - 对最终结果减去 1 并截取出后 500 位作为输出。 下面是基于 Python 实现的一个高效版本代码示例: ```python import math def calculate_mersenne_number(p, last_digits_count=500): # Step 1: Calculate the number of digits in 2^p - 1 num_digits = int(math.floor(p * math.log10(2))) + 1 # Initialize a list to store high precision result with initial value as [1] res = [1] # Perform fast exponentiation using repeated squaring method power = p base = 2 % (10 ** last_digits_count) while power > 0: if power & 1: temp_res = [] carry = 0 for digit in res: mul = digit * base + carry temp_res.append(mul % (10 ** last_digits_count)) carry = mul // (10 ** last_digits_count) if carry > 0: temp_res.append(carry) res = temp_res[:] square_carry = 0 squared = [] for digit in res: sq = digit * digit + square_carry squared.append(sq % (10 ** last_digits_count)) square_carry = sq // (10 ** last_digits_count) if square_carry > 0: squared.append(square_carry) res = squared[:] base = (base * base) % (10 ** last_digits_count) power >>= 1 # Subtract one from the final result and adjust it accordingly. borrow = 1 for i in range(len(res)): idx = len(res) - 1 - i new_val = res[idx] - borrow if new_val >= 0: res[idx] = new_val break else: res[idx] = new_val + (10 ** last_digits_count) # Convert the result into string format by reversing each part appropriately. str_result = ''.join([f"{digit}".zfill(last_digits_count)[-last_digits_count:] for digit in reversed(res)]) return num_digits, str_result[-last_digits_count:] # Example usage if __name__ == "__main__": p_value = 3021377 # Given prime number P total_digits, last_500_digits = calculate_mersenne_number(p_value) print(f"Total Number of Digits: {total_digits}") print(f"Last 500 Digits:\n{last_500_digits}") ``` 上述程序实现了两个功能模块——分别负责计算总位和提取指定长度尾部序列[^3]。 --- #### 三、总结说明 此方案综合运用了学理论简化复杂度较高的指运算环节,并借助编程技巧完成了必要的高精度过载支持。这种方法不仅适用于本题情境下超大规模值场景下的精确表达需求,在其他类似领域同样具备广泛适用价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值