【矩阵乘法 模版】洛谷_3390 矩阵快速幂

题意

给出一个矩阵 A A A,求出 A k A^k Ak

思路

因为矩阵乘法满足结合律,所以结合快速幂的方法可以快速求出答案。

代码

#include<cstdio>
#include<cstring>

const int mod = 1e9 + 7;
int N;
long long K;
struct matrix{
	int a[101][101];
}result, a;

matrix operator *(matrix &a, matrix &b){
    matrix c;
    memset(c.a, 0, sizeof(c.a));
    for (int i = 1; i <= N; i++)
        for (int j = 1; j <= N; j++)
            for (int k = 1; k <= N; k++)
                c.a[i][j] = (c.a[i][j] + (long long)a.a[i][k] * b.a[k][j]) % mod;
    return c;
}

int main() {
    scanf("%d %lld", &N, &K);
    for (int i = 1; i <= N; i++)
        for (int j = 1; j <= N; j++)
            scanf("%d", &a.a[i][j]);
    result = a;
    for (K--; K; K >>= 1) {
        if (K & 1) result = result * a;
       	a = a * a;
    }
    for (int i = 1; i <= N; i++) {
        for (int j = 1; j <= N; j++)
            printf("%d ", result.a[i][j]);
        printf("\n");
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值