题意
给出 x x x和 y y y,求 ∑ i = 1 y x % i \sum_{i=1}^{y}x\%i i=1∑yx%i
思路
我们可以改写一下这个式子,根据取模运算,可以这样写
∑
i
=
1
y
x
−
i
⌊
x
/
i
⌋
\sum_{i=1}^{y}x-i\left \lfloor x/i \right \rfloor
i=1∑yx−i⌊x/i⌋
x
y
−
∑
i
=
1
y
i
⌊
x
/
i
⌋
xy -\sum_{i=1}^{y}i\left \lfloor x/i \right \rfloor
xy−i=1∑yi⌊x/i⌋
如果打一下表,可以发现
⌊
x
/
i
⌋
\left \lfloor x/i \right \rfloor
⌊x/i⌋在一定范围内是相同的,我们就可以求出这一块的区间,然后用等差数列算出答案。
我们设
t
=
⌊
x
/
i
⌋
t=\left \lfloor x/i \right \rfloor
t=⌊x/i⌋
t
=
0
时
t=0时
t=0时,
r
=
n
r=n
r=n
t
≠
0
时
t\neq0时
t̸=0时,
r
=
m
i
n
(
⌊
x
/
t
⌋
,
n
)
r=min(\left \lfloor x/t \right \rfloor,n)
r=min(⌊x/t⌋,n)
对于第一种情况,因为
t
=
0
t=0
t=0,所以后面的
i
i
i都是比
x
x
x大的。
对于第二种情况,我们算出一个可以整除
t
t
t的最大整数就是
r
r
r了,与
n
n
n取最小值防止超出范围。
代码
#include<cstdio>
#include<algorithm>
long long x, y, ans;
int main() {
scanf("%d %d", &x, &y);
ans = x * y;
for (long long l = 1, r = 1; l <= y; l = r + 1) {
long long t = x / l;
if (!t) r = y;
else r = std::min(x / t, y);
ans -= t * (r - l + 1) * (l + r) / 2;
}
printf("%lld", ans);
}