取数字问题
Description
给定M*N的矩阵,其中的每个元素都是-10到10之间的整数。你的任务是从左上角(1,1)走到右下角(M,N),每一步只能向右或向下,并且不能走出矩阵的范围。你所经过的方格里面的数字都必须被选取,请找出一条最合适的道路,使得在路上被选取的数字之和是尽可能小的正整数。
Input
第一行两个整数M,N,(2<=M,N<=10),分别表示矩阵的行和列的数目。接下来的M行,每行包括N个整数,就是矩阵中的每一行的N个元素。
Output
仅一行一个整数,表示所选道路上数字之和所能达到的最小的正整数。如果不能达到任何正整数就输出-1。
Sample Input
2 2
0 2
1 0
Sample Output
1
解题思路
这道题最恶心的地方就在于负数,我就是因为负数这个东东而在这道题卡了忒久。
状态转移方程:
f
[
x
]
[
y
]
[
d
]
=
1
;
f[x][y][d]=1;
f[x][y][d]=1;
if(x<n&&f[x+1][y][d+a[x+1][y]]==0)
D
F
S
(
x
+
1
,
y
,
d
+
a
[
x
+
1
]
[
y
]
)
;
DFS(x+1,y,d+a[x+1][y]);
DFS(x+1,y,d+a[x+1][y]);
if(y<m&&f[x][y+1][d+a[x][y+1]]==0)
D
F
S
(
x
,
y
+
1
,
d
+
a
[
x
]
[
y
+
1
]
)
;
DFS(x,y+1,d+a[x][y+1]);
DFS(x,y+1,d+a[x][y+1]);
#include<iostream>
#include<cstdio>
using namespace std;
int n,m,a[20][20];
bool f[20][20][2001];
void DFS(int x,int y,int d)
{
f[x][y][d]=1;
if(x<n&&f[x+1][y][d+a[x+1][y]]==0)
DFS(x+1,y,d+a[x+1][y]);//动态转移方程
if(y<m&&f[x][y+1][d+a[x][y+1]]==0)
DFS(x,y+1,d+a[x][y+1]);
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
cin>>a[i][j];
DFS(1,1,1000+a[1][1]);
for(int i=1001;i<=2000;i++)
if(f[n][m][i])//如果可以
{
cout<<i-1000;
return 0;//直接输出i-1000并且结束程序
}
cout<<"-1";//如果不能表达,则输出-1
return 0;
}