【BFS】骑士旅行

该博客探讨了如何使用广度优先搜索(BFS)算法解决骑士在n*m棋盘上从左下角(1;1)到达指定位置(i;j)的最少移动次数问题。当目标位置无法达到时,输出'NEVER'。博客提供了输入输出样例,并指出这是一个典型的路径规划问题。
摘要由CSDN通过智能技术生成

时间限制:1000MS内存限制:256000KB

题目描述

在一个n m 格子的棋盘上,有一只国际象棋的骑士在棋盘的左下角 (1;1)(如图1),骑士只能根据象棋的规则进行移动,要么横向跳动一格纵向跳动两格,要么纵向跳动一格横向跳动两格。 例如, n=4,m=3 时,若骑士在格子(2;1) (如图2), 则骑士只能移入下面格子:(1;3),(3;3) 或 (4;2);对于给定正整数n,m,I,j值 (m,n<=50,I<=n,j<=m) ,你要测算出从初始位置(1;1) 到格子(i;j)最少需要多少次移动。如果不可能到达目标位置,则输出"NEVER"。

这里写图片描述

输入

输入文件的第一行为两个整数n与m,第二行为两个整数i与j。

输出

输出文件仅包含一个整数为初始位置(1;1) 到格子(i;j)最少移动次数。

输入样例
5 3
1 2
输出样例
3

思路:

广搜思路。

#include<iostream>
#include<cstdio>
using namespace std;
int n,m,x,y;//范围和终点
const int dx[9]={
    0,1,2,-1,-2,1,2,-1,-2};
const int dy[9]=
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值