粒子群优化算法,C#实现

粒子群算法是一门新兴算法,此算法与遗传算法有很多相似之处,其收敛于全局最优解的概率很大。
①相较于传统算法计算速度非常快,全局搜索能力也很强;
②PSO对于种群大小不十分敏感,所以初始种群设为500-1000,速度影响也不大;
③粒子群算法适用于连续函数极值问题,对于非线性多峰问题均有较强的全局搜索能力。

作为举例说明,本文将用粒子群算法,求解Rastrigin函数f(x)=x²-10*cos(2πx)+10在区间[-6,6]的极小值。
先用matlab画出这个函数的图像,便于我们直观地观察:
Matlab函数图像
该函数的全局最小值为0,在x=0处取得

下面,用C#实现求极值。测试环境VS2015

using System;
using System.Linq;
using System.Threading;

namespace PSO_FunctionTest
{
   

    class Program
    {
   
        public static double[] xlimit = new double[2] {
    -6, 6 };       //位置边界设置
        public static double[] vlimit = new double[2] {
    -2, 2 };       //速度边界设置
        
        public static int generation;             //迭代次数

         static void Main(string[] args)
        {
   
            int popsize;                  //种群规模         
            double Wmax=0.95;             //惯性权重设置
            double Wmin = 0.45;
            double C1 = 2;                //自我学习因子
            double C2 = 2;                //群体学习因子
            Random rand = new Random();
            
            Console.WriteLine("请输入种群规模大小:");
            popsize = Convert.ToInt32(Console.ReadLine());
            Console.WriteLine("请输入迭代次数:");
            generation = Convert.ToInt32(Console.ReadLine());
            Console.WriteLine("算法运行中,请稍后......");

         
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值