Given a binary number, we are about to do some operations on the number. Two types of operations can be here.
'I i j' which means invert the bit from i to j (inclusive)
'Q i' answer whether the ith bit is 0 or 1
The MSB (most significant bit) is the first bit (i.e. i=1). The binary number can contain leading zeroes.
Input
Input starts with an integer T (≤ 10), denoting the number of test cases.
Each case starts with a line containing a binary integer having length n (1 ≤ n ≤ 105). The next line will contain an integer q (1 ≤ q ≤ 50000) denoting the number of queries. Each query will be either in the form 'I i j' where i, j are integers and 1 ≤ i ≤ j ≤ n. Or the query will be in the form 'Q i' where i is an integer and 1 ≤ i ≤ n.
Output
For each case, print the case number in a single line. Then for each query 'Q i' you have to print 1 or 0 depending on the ith bit.
Sample Input | Output for Sample Input |
2 0011001100 6 I 1 10 I 2 7 Q 2 Q 1 Q 7 Q 5 1011110111 6 I 1 10 I 2 7 Q 2 Q 1 Q 7 Q 5 | Case 1: 0 1 1 0 Case 2: 0 0 0 1 |
题目大意是给你一个二进制串(可以有前导零),有两种操作,I 表示把一个区间的0变成1,1变成0,(我第一开始以为是把这整个区间颠倒过来~~~),Q表示查询第x位是0还是1.
用树状数组记录每一个位置更新了多少次,就可以直接输出答案。
树状数组区间更新为add(l,1),add(r+1,-1),这样就可以把[l,r]区间更新了,我看了网上好多题解,虽然都知道用树状数组,但是都没说请,树状数组可以单点更新然后区间查询,也可以区间更新单点查询,这题用的就是后者。
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
using namespace std;
int n;
int tree[100010];
void add(int k,int num)
{
while(k<=n)
{
tree[k]+=num;
k+=k&-k;
}
}
int read(int k)
{
int sum=0;
while(k)
{
sum+=tree[k];
k-=k&-k;
}
return sum;
}
void update(int l,int r)
{
add(l,1);
add(r+1,-1);
}
int main(void)
{
int T,q,i,j;
char a[100010];
scanf("%d",&T);
int cas = 1;
while(T--)
{
memset(tree,0,sizeof(tree));
scanf("%s",a+1);
n = strlen(a+1);
scanf("%d",&q);
printf("Case %d:\n",cas++);
while(q--)
{
char s[5];
scanf("%s",s);
if(s[0] == 'I')
{
int l,r;
scanf("%d%d",&l,&r);
update(l,r);
}
if(s[0] == 'Q')
{
int x;
scanf("%d",&x);
if(read(x)%2 == 1)
{
if(a[x] == '1')
printf("0\n");
else
printf("1\n");
}
else
printf("%c\n",a[x]);
}
}
}
return 0;
}