bzoj 2005 能量采集(莫比乌斯反演)

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,
栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列
有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,
表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了
一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器
连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于
连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植
物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20
棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能
量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】
5 4
【样例输入2】
3 4

Sample Output

【样例输出1】
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。

题意:求所有点到(0,0)点的能量损失,一个点的能量损失等于这个点到(0,0)点的连线上的点的数量*2 - 1,不包括(0,0)点和这个点本身。

画个图就可以发现,点(x,y)与(0,0)连线上的点的数量就等于gcd(x,y) - 1,然而点的数量很多,所以不能一个点一个点的求。

我们可以求出gcd为1的点的数量,gcd为2的点的数量。。。直到gcd为min(n,m)的点的数量,这样就可以求出总的能量损失。

这样我们就可以用莫比乌斯反演,设F(n) 为gcd是n的倍数的个数,f(n)为gcd是n的个数,

答案就是sigma(f(i))   1 <= i <= min(n,m),

莫比乌斯反演有两种形式,这里我们使用第二种:

一、

二、


还有这题要注意的就是植物的坐标的范围,坐标为(x,y) ,1 <= x <= n, 1<= y <= m,所以坐标轴上的点都不算,所以对于一个gcd i,F(n) = (n/i)*(m/i)。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
using namespace std;

const int maxn = 1e5 + 10;
int p[maxn/10];
int flag[maxn];
int mu[maxn];
int cnt = 0;
void init()
{
    int i,j;
    mu[1] = 1;
    for(i=2;i<maxn;i++)
    {
        if(!flag[i])
        {
            p[cnt++] = i;
            mu[i] = -1;
        }
        for(j=0;j<cnt&&p[j]*i<maxn;j++)
        {
            flag[p[j]*i] = 1;
            if(i % p[j] == 0)
            {
                mu[p[j]*i] = 0;
                break;
            }
            mu[p[j]*i] = -mu[i];
        }
    }
}

int main(void)
{
    int n,m,i,j;
    init();
    while(scanf("%d%d",&n,&m)==2)
    {
        LL ans = 0;
        for(i=1;i<=min(n,m);i++)
        {
            LL sum = 0;
            for(j=i;j<=min(n,m);j+=i)
            {
                sum += (LL)mu[j/i]*(n/j)*(m/j);
            }
            ans += ((i-1)*2+1)*sum;
        }
        printf("%lld\n",ans);
    }

    return 0;
}


发布了179 篇原创文章 · 获赞 74 · 访问量 14万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览