BZOJ2818 Gcd[莫比乌斯反演]


题解:

首先根据题意,设 f(i) 为 gcd(x,y)=i 的对数。

对应的设( d=k*j [k>=1]   因为总是忘记整除左大还是右大)

F(j)我们可以很容易求出来,就是,因为 F(j) 代表在 n 里面所有 gcd(x,y)=i 其中 i 是 j 的倍数的所有情况。

那么反过来就是 ,但是我们不单单只是求 f(i) 单项,而是求 n 里面 gcd(x,y)=素数的情况。

那么最终结果就是 ( p 代表在 n 内的所有素数)。

将刚才的式子带进去,就变成 ,这个题给的时间,用这个式子完全可以暴力算出来了。


=====================================================================

但是显然,我们可以很容易发现,合数会在这个式子当中重复出现多次。

那么这意味着,只要我们能求出就能把枚举 n 内的每个素数的所有倍数,变为枚举 1 到 n 的所有数了。

式子将变成这样 (因为 1 并不是素数的倍数,所以从2开始)

现在的问题就转换成如何算出T(d)。


① 当 d 为素数的时候 那么 T(d) 必然为 μ(d/d) 即 μ(1)。

这提醒了我们,线性筛有可能把T(d)一起算出来。


② d%prim[j] != 0 的时候 ,就代表着 d 中不存在prim[j] 这个素因子。

但是在 d*prim[j] 中却存在这个素因子,而莫比乌斯是个积性函数,μ(a*b)=μ(a)*μ(b) (当 gcd(a,b)==1 )


 



③ d%prim[j] == 0 的时候,就代表d中存在 prim[j] 这个素因子。


那么这意味着 第二项的求和式当中,除了当 p = prim[j] 这一项以外,其他的数,都会其中一个素因子的指数为2以上,就代表着该数的 μ的值为0,仅存在有可能有值,那么T(d*prim[j])=μ(d)

那么最终,我们就可以用打表打出T(d)的全部值了。


同时在打表中求个T(d)的前缀和,分块加速来求和即可。


T_T但是有人能告诉我,为啥这样写的时间,比我用暴力还要长啊!!!


暴力

#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<vector>
using namespace std;
typedef long long ll;
const int N=1e7+5;
bool mark[N];
int prim[N],mu[N],smu[N];
int cnt;
void initial()
{
    cnt=0;
    smu[1]=mu[1]=1;
    for (int i=2 ; i<N ; ++i)
    {
        if (!mark[i])
        {
            prim[cnt++]=i;
            mu[i]=-1;
        }
        for (int j=0 ; j<cnt && i*prim[j]<N ; ++j)
        {
            mark[i*prim[j]]=1;
            if (!(i%prim[j]))
            {
                mu[i*prim[j]]=0;
                break;
            }
            mu[i*prim[j]]=-mu[i];
        }
        smu[i]=smu[i-1]+mu[i];
    }

}
int main()
{
    initial();
	int n;
	while (~scanf("%d",&n))
    {
        ll ans=0;
        for (int i=0 ; i<cnt && prim[i]<=n ; ++i)
            for (int j=1 ; j*prim[i]<=n ; ++j)
                ans+=(ll)mu[j]*(n/(j*prim[i]))*(n/(j*prim[i]));
        printf("%lld\n",ans);
    }
	return 0;
}

优化后

#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<vector>
using namespace std;
typedef long long ll;
const int N=1e7+5;
bool mark[N];
int prim[N],mu[N],T[N],st[N];
int cnt;
void initial()
{
    cnt=0;
    mu[1]=1;
    T[1]=st[1]=0;
    for (int i=2 ; i<N ; ++i)
    {
        if (!mark[i])
        {
            prim[cnt++]=i;
            mu[i]=-1;
            T[i]=mu[1];
        }
        for (int j=0 ; j<cnt && i*prim[j]<N ; ++j)
        {
            mark[i*prim[j]]=1;
            if (!(i%prim[j]))
            {
                mu[i*prim[j]]=0;
                T[i*prim[j]]=mu[i];
                break;
            }
            mu[i*prim[j]]=-mu[i];
            T[i*prim[j]]=mu[prim[j]]*T[i]+mu[i];
        }
        st[i]=st[i-1]+T[i];
    }
}
int main()
{
    initial();
    int n;
    while (~scanf("%d",&n))
    {
        ll ans=0;
        for (int i=2,ed=0 ; i<=n ; i=ed+1)
        {
            ed=n/(n/i);
            ans+=(ll)(st[ed]-st[i-1])*(n/i)*(n/i);
        }
        printf("%lld\n",ans);
    }
    return 0;
}



展开阅读全文

150讲轻松搞定Python网络爬虫

05-16
【为什么学爬虫?】        1、爬虫入手容易,但是深入较难,如何写出高效率的爬虫,如何写出灵活性高可扩展的爬虫都是一项技术活。另外在爬虫过程中,经常容易遇到被反爬虫,比如字体反爬、IP识别、验证码等,如何层层攻克难点拿到想要的数据,这门课程,你都能学到!        2、如果是作为一个其他行业的开发者,比如app开发,web开发,学习爬虫能让你加强对技术的认知,能够开发出更加安全的软件和网站 【课程设计】 一个完整的爬虫程序,无论大小,总体来说可以分成三个步骤,分别是: 网络请求:模拟浏览器的行为从网上抓取数据。 数据解析:将请求下来的数据进行过滤,提取我们想要的数据。 数据存储:将提取到的数据存储到硬盘或者内存中。比如用mysql数据库或者redis等。 那么本课程也是按照这几个步骤循序渐进的进行讲解,带领学生完整的掌握每个步骤的技术。另外,因为爬虫的多样性,在爬取的过程中可能会发生被反爬、效率低下等。因此我们又增加了两个章节用来提高爬虫程序的灵活性,分别是: 爬虫进阶:包括IP代理,多线程爬虫,图形验证码识别、JS加密解密、动态网页爬虫、字体反爬识别等。 Scrapy和分布式爬虫:Scrapy框架、Scrapy-redis组件、分布式爬虫等。 通过爬虫进阶的知识点我们能应付大量的反爬网站,而Scrapy框架作为一个专业的爬虫框架,使用他可以快速提高我们编写爬虫程序的效率和速度。另外如果一台机器不能满足你的需求,我们可以用分布式爬虫让多台机器帮助你快速爬取数据。   从基础爬虫到商业化应用爬虫,本套课程满足您的所有需求! 【课程服务】 专属付费社群+每周三讨论会+1v1答疑
©️2020 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值