kuangbin专题 专题一 简单搜索 Prime Path POJ - 3126

Prime Path POJ - 3126

题目链接:https://vjudge.net/problem/POJ-3126

题意:给你两个四位的素数N,M,每次改变N四位数中的其中一位,如果能经过有限次数的替换变成四位数M,那么求出最少替换次数,否则输出“Impossible”.(N,M必须一直是素数)

思路:bfs。四位数,每一位可以替换为0~9,那么我们可以每次改变N中的一位数,然后放入队列中,当然,在替换数字时难免会出现重复的四位数,这样会造成TLE,那么我们可以创建一个bool数组标记出现过的,我们也需要素数筛999 ~ 10000之间的素数(你想删哪里到哪就哪里,不要纠结),因为是bfs,所以第一次出现的新的四位素数一定是替换次数最少的,那么题目就简单了。

#include <iostream>
#include <cstring>
#include <cmath>
#include <queue>
#include <algorithm>
using namespace std;

#define inf (1LL << 31) - 1
#define rep(i,j,k) for(int i = (j); i <= (k); i++)
#define rep__(i,j,k) for(int i = (j); i < (k); i++)
#define per(i,j,k) for(int i = (j); i >= (k); i--)
#define per__(i,j,k) for(int i = (j); i > (k); i--)

const int N = (int)1e4 + 10;
bool vis[N]; //素数表 0为素数
bool app[N]; //标记是否出现过
int ans;

struct node{

	int a[4];
	int cost;

	node(int* a,int e){
		rep(i, 0, 3){
			this->a[i] = a[i];
		}
		this->cost = e;
	}

	int x(){ //返回四位数的成员函数
		int num = 0;
		rep(i, 0, 3) num = num * 10 + a[i];
		return num;
	}
};

void get_Prime(){ //素数打表

	rep(i, 2, (int)sqrt(N*1.0)){
		if (!vis[i]){
			for (int p = i * i; p <= N; p += i) vis[p] = true;
		}
	}
}

bool work(int x[], int y){  //true为有答案,false为没答案

	queue<node> que;
	node t (x,0);

	app[t.x()] = true;

	que.push(t);

	if (t.x() == y){
		ans = 0;
		return true;
	}

	while (!que.empty()){

		node tmp = que.front();
		que.pop();

		rep(i, 0, 3){ //1~4不同位置
			rep(j, 0, 9){ //替换为0~9
				if (i == 0 && j == 0) continue; //第一位不能是0
				int tt = tmp.a[i]; //暂存该数
				tmp.a[i] = j;      //改变
				
				//该四位数没有出现过且该数是素数
				if (!app[tmp.x()] && !vis[tmp.x()]){

					app[tmp.x()] = true; //标记一下

					if (tmp.x() == y){ //如果变成了想变成的数了
						ans = tmp.cost + 1;
						return true;
					}
					que.push(node{tmp.a,tmp.cost + 1}); //新的四位数放入队列,花费加一
				}
				tmp.a[i] = tt; //变回原来的四位数
			}
		}

	}

	return false;
}

int main(){

	ios::sync_with_stdio(false);
	cin.tie(0);

	get_Prime();//得到素数表
	int n;
	cin >> n;

	int a, b;
	while (n--){

		memset(app, 0, sizeof(app)); //每次初始化

		cin >> a >> b;

		int aa[4];
		int len = 0;
		rep(i, 0, 3){
			aa[3-len++] = a % 10;
			a /= 10;
		} //分割a变为四个数

		//node tmp(aa, 0);
		//cout << "tmp:::" << tmp.x() << endl;

		if (work(aa, b)) cout << ans << endl;
		else cout << "Impossible" << endl;
	}
	
	return 0;
}

以下是对提供的参考资料的总结,按照要求结构化多个要点分条输出: 4G/5G无线网络优化与网规案例分析: NSA站点下终端掉4G问题:部分用户反馈NSA终端频繁掉4G,主要因终端主动发起SCGfail导致。分析显示,在信号较好的环境下,终端可能因节能、过热保护等原因主动释放连接。解决方案建议终端侧进行分析处理,尝试关闭节电开关等。 RSSI算法识别天馈遮挡:通过计算RSSI平均值及差值识别天馈遮挡,差值大于3dB则认定有遮挡。不同设备分组规则不同,如64T和32T。此方法可有效帮助现场人员识别因环境变化引起的网络问题。 5G 160M组网小区CA不生效:某5G站点开启100M+60M CA功能后,测试发现UE无法正常使用CA功能。问题原因在于CA频点集标识配置错误,修正后测试正常。 5G网络优化与策略: CCE映射方式优化:针对诺基亚站点覆盖农村区域,通过优化CCE资源映射方式(交织、非交织),提升RRC连接建立成功率和无线接通率。非交织方式相比交织方式有显著提升。 5G AAU两扇区组网:与三扇区组网相比,AAU两扇区组网在RSRP、SINR、下载速率和上传速率上表现不同,需根据具体场景选择适合的组网方式。 5G语音解决方案:包括沿用4G语音解决方案、EPS Fallback方案和VoNR方案。不同方案适用于不同的5G组网策略,如NSA和SA,并影响语音连续性和网络覆盖。 4G网络优化与资源利用: 4G室分设备利旧:面对4G网络投资压减与资源需求矛盾,提出利旧多维度调优策略,包括资源整合、统筹调配既有资源,以满足新增需求和提质增效。 宏站RRU设备1托N射灯:针对5G深度覆盖需求,研究使用宏站AAU结合1托N射灯方案,快速便捷地开通5G站点,提升深度覆盖能力。 基站与流程管理: 爱立信LTE基站邻区添加流程:未提供具体内容,但通常涉及邻区规划、参数配置、测试验证等步骤,以确保基站间顺畅切换和覆盖连续性。 网络规划与策略: 新高铁跨海大桥覆盖方案试点:虽未提供详细内容,但可推测涉及高铁跨海大桥区域的4G/5G网络覆盖规划,需考虑信号穿透、移动性管理、网络容量等因素。 总结: 提供的参考资料涵盖了4G/5G无线网络优化、网规案例分析、网络优化策略、资源利用、基站管理等多个方面。 通过具体案例分析,展示了无线网络优化中的常见问题及解决方案,如NSA终端掉4G、RSSI识别天馈遮挡、CA不生效等。 强调了5G网络优化与策略的重要性,包括CCE映射方式优化、5G语音解决方案、AAU扇区组网选择等。 提出了4G网络优化与资源利用的策略,如室分设备利旧、宏站RRU设备1托N射灯等。 基站与流程管理方面,提到了爱立信LTE基站邻区添加流程,但未给出具体细节。 新高铁跨海大桥覆盖方案试点展示了特殊场景下的网络规划需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值