(手写识别) Zinnia库及其实现方法研究

本文详细探讨了开源手写识别库Zinnia,它基于C++,提供高效的手写识别和学习功能。通过源代码研究,揭示了其内部机制,包括Character、Recognizer、Result和Trainer等核心接口的实现。Zinnia利用SVM实现快速学习,支持多种语言调用,并具有良好的线程安全性。此外,还介绍了如何用MFC创建一个简单的手写识别界面,包括坐标转换、显著点寻找算法和特征提取等步骤。
摘要由CSDN通过智能技术生成
Zinnia库及其实现方法研究 (转)

zinnia是一个开源的手写识别库。采用C++实现。具有手写识别,学习以及文字模型数据制作转换等功能。

  • 项目地址 [http://zinnia.sourceforge.net ]
  • License: NewBSD
  • 作者对SVM很有研究. 比同类程序的效率要高效.(同类项目如tegaki)
  • 我的目的是通过这个研究简单的手写输入实现方法
Zinnia库特点
  • SVM机实现
  • 轻量级,可移植
  • 线程安全,可供C,C++,Perl,Python,Ruby调用
  • 每秒50-100 char的认识速度
  • 快速学习

以下为通过源代码研究和debug得出的结论。

可能不是完全准确

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值