我在leetcode学machinelearning

1.明确机器学习的目的:寻找一种合适的映射函数。

2.区分机器学习:有监督,无监督,半监督。其中区别其实就是真值的有无和多少。其中,对于半监督问题,我们首先采用聚类等无监督的手法,缩小处理范围,然后再利用少量的真值进行有监督的算法。

3.映射函数可以分为两种类型,一种是回归,一种是分类。注意两种函数是可以互相转化的。

4.机器学习工作流:

准备数据:1.分组-测试以及训练。2.补缺。3特征编码。

建模:选择算法-训练数据-测试数据-超参数调优

注意,这个流程是要反复迭代的,比如,有时候会要回到数据准备的过程。再比如要返回去训练数据。

(名词解释:产参数:其实就是算法提供的参数接口,调整这些参数,会影响算法底层的模型)

5.欠拟合,过拟合。其中,欠拟合应当选择更复杂算法,过拟合应该换算法或者对已有的算法增添正则化项。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值