什么是频谱泄漏?如何降低频谱泄漏?--频谱泄漏与窗函数

原文出自微信公众号【小小的电子之路】

在数字信号处理领域,快速傅里叶变换(FFT)可以说是其核心内容之一。在利用FFT分析信号频谱的过程中,不可避免地会出现频谱泄漏现象,因此,我们所观察到的信号频谱只是其真实频谱的近似,为了减少二者之间的误差,我们必须最小化频谱泄漏。接下来,本文就来简单介绍一下什么是频谱泄漏为什么会出现频谱泄漏如何最小化频谱泄漏以及窗函数对目标信号的负面影响

1、什么是频谱泄漏

频谱泄漏是指输入信号中的某些频率分量的能量出现在FFT输出的其它频率点上。如下图所示,我们希望信号的能量全部集中在主瓣上,但是实际上,信号的能量存在泄漏,也就是存在旁瓣,从而使能量出现在其两侧其它频点上,产生频谱泄漏现象。

2、为什么会出现频谱泄漏

频谱泄漏现象出现的原因是FFT的输入序列不包含分析频率的完整周期。FFT计算结果中的幅频响应可以近似理解为对sinc函数的采样,而sinc函数的参数受输入序列包含的分析信号的周期数的影响。

假设输入序列包含目标信号的完整周期,其幅频响应如下图所示,可以看出,输出频谱在对sinc函数进行采样时,采样到的旁瓣能量均为零,因此,其旁瓣能量不会对输出频谱中其它频点的能量产生影响。

若输入序列没有包含目标信号的完整周期,则其幅频响应如下图所示,输出频谱在对sinc函数进行采样时,采样到了旁瓣能量,这些能量就会叠加在其它频点的能量上,产生频谱泄漏现象。

3、如何最小化频谱泄漏

最小化频谱泄漏的核心就是降低旁瓣的幅度。通过前文的分析可以发现,频谱泄漏就是因为信号旁瓣的能量影响到了其它频点,那么,只要能够降低旁瓣的能量,就能减弱频谱泄漏。

旁瓣能量的降低可以通过对输入序列加窗实现。下图是几种不同窗函数的频率响应,可以看出,窗函数的类型不同,其旁瓣衰减也不同。

分别利用这几种窗函数处理发生频谱泄漏的信号,处理结果如下图所示,所用窗函数不同,频谱泄漏的程度也不同。

4、窗函数对目标信号的负面影响

如果目标信号并没有发生频谱泄漏现象,那么窗函数对其有什么影响呢?

(1)降低主瓣幅度;

实际上,窗函数不仅仅会降低旁瓣幅度,同时也会降低主瓣幅度,只是此时旁瓣幅度相对于主瓣幅度而言更低了,重点在相对幅度

(2)降低频率分辨率。

窗函数带来的另一个影响就是会拓宽主瓣宽度,这将导致频率分辨率降低。如下图所示,加窗处理后,主瓣宽度拓宽,导致目标频率周围频点幅值不为零,一旦这些频点存在有用信号,将无法准确区分其幅值,因此,频率分辨率降低,准确的表述为频率分辨率减半

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值