【题解】间谍网络

题面

【题目描述】
由于外国间谍的大量渗入,国家安全正处于高度的危机之中。如果A间谍手中掌握着关于B间谍的犯罪证据,则称A可以揭发B。有些间谍收受贿赂,只要给他们一定数量的美元,他们就愿意交出手中掌握的全部情报。所以,如果我们能够收买一些间谍的话,我们就可能控制间谍网中的每一分子。因为一旦我们逮捕了一个间谍,他手中掌握的情报都将归我们所有,这样就有可能逮捕新的间谍,掌握新的情报。
我们的反间谍机关提供了一份资料,色括所有已知的受贿的间谍,以及他们愿意收受的具体数额。同时我们还知道哪些间谍手中具体掌握了哪些间谍的资料。假设总共有n个间谍(n不超过3000),每个间谍分别用1到3000的整数来标识。
请根据这份资料,判断我们是否有可能控制全部的间谍,如果可以,求出我们所需要支付的最少资金。否则,输出不能被控制的一个间谍。
【输入】
输入文件age.in第一行只有一个整数n。
第二行是整数p。表示愿意被收买的人数,1≤p≤n。
接下来的p行,每行有两个整数,第一个数是一个愿意被收买的间谍的编号,第二个数表示他将会被收买的数额。这个数额不超过20000。
紧跟着一行只有一个整数r,1≤r≤8000。然后r行,每行两个正整数,表示数对(A, B),A间谍掌握B间谍的证据。
【输出】
如果可以控制所有间谍,第一行输出YES,并在第二行输出所需要支付的贿金最小值。否则输出NO,并在第二行输出不能控制的间谍中,编号最小的间谍编号。
【样例输入】

3
2
1 10
2 100
2
1 3
2 3

【样例输出】

YES
110

【数据规模】
对于30%的数据,满足1<=n<=10;
对于100%的数据,满足1<=n<=3000;

算法分析

强连通分量缩点。
在一个强连通分量里,贿赂任意一个间谍都可以控制该强连通分量的所有间谍,显然,肯定贿赂价格最低的。
第一步,进行缩点,假设缩点后如下图:
在这里插入图片描述
对于强连通4,其实可以不用贿赂,5能够控制。通过观察发现,显然,只需要控制入度为0的强连通分量。
第二步,统计入度为0的强连通分量,贿赂其中价格最低的一个间谍。如果发现入度为0的强连通分量没有人可以贿赂,那么就无法控制所有人,输出"NO",否则输出“YES”,并统计最小花费。
第三步,如果无法控制所有人,那么可以将所有能够贿赂的人都贿赂了,最后找出未被控制的人即可。

参考程序

#include<bits/stdc++.h>
using namespace std;
#define N 10000
int n,p,r,s[N],w[N];
int first[N],nex[N],to[N],t;    //邻接表 
int scc[N],cnt; //统计强联通分量 
int dfn[N],low[N],sta[N],top,vis[N];    //tarjan 
int rd[N];
void tarjan(int u)
{
    dfn[u]=low[u]=++t; 
    sta[++top]=u;
    vis[u]=1;
    for(int i=first[u];i!=-1;i=nex[i])
    {
        int v=to[i];
        if(!dfn[v])
        {
            tarjan(v);
            low[u]=min(low[u],low[v]);
        }
        else if(vis[v])
            low[u]=min(low[u],dfn[v]);
    }
    if(low[u]==dfn[u])
    {
        cnt++;
        while(sta[top]!=u)
        {
            scc[sta[top]]=cnt;
            vis[sta[top]]=0;
            top--;
        }
        scc[u]=cnt;
        vis[sta[top]]=0;
        top--;
    }
}
void Add(int u,int v)
{
    nex[++t]=first[u];
    to[t]=v;
    first[u]=t;
}
int main()
{
    memset(first,-1,sizeof(first));
    scanf("%d%d",&n,&p);
    int a,b;
    for(int i=1;i<=p;i++)
    {
        scanf("%d%d",&a,&b);
        s[a]=1;
        w[a]=b;
    }
    scanf("%d",&r);
    for(int i=1;i<=r;i++)
    {
        scanf("%d%d",&a,&b);
        Add(a,b);
    }
    t=0;
    for(int i=1;i<=n;i++)
        if(!dfn[i]) tarjan(i); 
    for(int i=1;i<=n;i++)
    {
        for(int j=first[i];j!=-1;j=nex[j])
        {
            int v=to[j];
            if(scc[v]!=scc[i]) rd[scc[v]]++;	//求解入度
        }
    }
    int flag=1,ans=0;
    for(int i=1;i<=cnt;i++)
    {
        int minn=30000;
        if(rd[i]==0)
        {
            for(int j=1;j<=n;j++)
            {
                if(scc[j]==i&&s[j]&&w[j]<minn)
                    minn=w[j];
            }
            if(minn==30000) flag=0;		//如果强连通分量一个人也不能贿赂
            ans+=minn;
        }
    }
    if(flag) cout<<"YES"<<endl<<ans<<endl;
    memset(vis,0,sizeof(vis));
    if(flag==0)     //如果不行,就贿赂所有可以贿赂的,找出最小未贿赂的 
    {
        for(int i=1;i<=n;i++)
        {
            if(s[i])
            {
                vis[i]=1;
                for(int j=1;j<=n;j++)
                {
                    if(scc[j]==scc[i]) vis[j]=1;
                }
                for(int j=first[i];j!=-1;j=nex[j])
                    vis[to[j]]=1;
            }
        } 
        for(int i=1;i<=n;i++)
            if(vis[i]==0) {cout<<"NO"<<endl<<i<<endl;break;}
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值