题面
【题目描述】
由于外国间谍的大量渗入,国家安全正处于高度的危机之中。如果A间谍手中掌握着关于B间谍的犯罪证据,则称A可以揭发B。有些间谍收受贿赂,只要给他们一定数量的美元,他们就愿意交出手中掌握的全部情报。所以,如果我们能够收买一些间谍的话,我们就可能控制间谍网中的每一分子。因为一旦我们逮捕了一个间谍,他手中掌握的情报都将归我们所有,这样就有可能逮捕新的间谍,掌握新的情报。
我们的反间谍机关提供了一份资料,色括所有已知的受贿的间谍,以及他们愿意收受的具体数额。同时我们还知道哪些间谍手中具体掌握了哪些间谍的资料。假设总共有n个间谍(n不超过3000),每个间谍分别用1到3000的整数来标识。
请根据这份资料,判断我们是否有可能控制全部的间谍,如果可以,求出我们所需要支付的最少资金。否则,输出不能被控制的一个间谍。
【输入】
输入文件age.in第一行只有一个整数n。
第二行是整数p。表示愿意被收买的人数,1≤p≤n。
接下来的p行,每行有两个整数,第一个数是一个愿意被收买的间谍的编号,第二个数表示他将会被收买的数额。这个数额不超过20000。
紧跟着一行只有一个整数r,1≤r≤8000。然后r行,每行两个正整数,表示数对(A, B),A间谍掌握B间谍的证据。
【输出】
如果可以控制所有间谍,第一行输出YES,并在第二行输出所需要支付的贿金最小值。否则输出NO,并在第二行输出不能控制的间谍中,编号最小的间谍编号。
【样例输入】
3
2
1 10
2 100
2
1 3
2 3
【样例输出】
YES
110
【数据规模】
对于30%的数据,满足1<=n<=10;
对于100%的数据,满足1<=n<=3000;
算法分析
强连通分量缩点。
在一个强连通分量里,贿赂任意一个间谍都可以控制该强连通分量的所有间谍,显然,肯定贿赂价格最低的。
第一步,进行缩点,假设缩点后如下图:
对于强连通4,其实可以不用贿赂,5能够控制。通过观察发现,显然,只需要控制入度为0的强连通分量。
第二步,统计入度为0的强连通分量,贿赂其中价格最低的一个间谍。如果发现入度为0的强连通分量没有人可以贿赂,那么就无法控制所有人,输出"NO",否则输出“YES”,并统计最小花费。
第三步,如果无法控制所有人,那么可以将所有能够贿赂的人都贿赂了,最后找出未被控制的人即可。
参考程序
#include<bits/stdc++.h>
using namespace std;
#define N 10000
int n,p,r,s[N],w[N];
int first[N],nex[N],to[N],t; //邻接表
int scc[N],cnt; //统计强联通分量
int dfn[N],low[N],sta[N],top,vis[N]; //tarjan
int rd[N];
void tarjan(int u)
{
dfn[u]=low[u]=++t;
sta[++top]=u;
vis[u]=1;
for(int i=first[u];i!=-1;i=nex[i])
{
int v=to[i];
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(vis[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
cnt++;
while(sta[top]!=u)
{
scc[sta[top]]=cnt;
vis[sta[top]]=0;
top--;
}
scc[u]=cnt;
vis[sta[top]]=0;
top--;
}
}
void Add(int u,int v)
{
nex[++t]=first[u];
to[t]=v;
first[u]=t;
}
int main()
{
memset(first,-1,sizeof(first));
scanf("%d%d",&n,&p);
int a,b;
for(int i=1;i<=p;i++)
{
scanf("%d%d",&a,&b);
s[a]=1;
w[a]=b;
}
scanf("%d",&r);
for(int i=1;i<=r;i++)
{
scanf("%d%d",&a,&b);
Add(a,b);
}
t=0;
for(int i=1;i<=n;i++)
if(!dfn[i]) tarjan(i);
for(int i=1;i<=n;i++)
{
for(int j=first[i];j!=-1;j=nex[j])
{
int v=to[j];
if(scc[v]!=scc[i]) rd[scc[v]]++; //求解入度
}
}
int flag=1,ans=0;
for(int i=1;i<=cnt;i++)
{
int minn=30000;
if(rd[i]==0)
{
for(int j=1;j<=n;j++)
{
if(scc[j]==i&&s[j]&&w[j]<minn)
minn=w[j];
}
if(minn==30000) flag=0; //如果强连通分量一个人也不能贿赂
ans+=minn;
}
}
if(flag) cout<<"YES"<<endl<<ans<<endl;
memset(vis,0,sizeof(vis));
if(flag==0) //如果不行,就贿赂所有可以贿赂的,找出最小未贿赂的
{
for(int i=1;i<=n;i++)
{
if(s[i])
{
vis[i]=1;
for(int j=1;j<=n;j++)
{
if(scc[j]==scc[i]) vis[j]=1;
}
for(int j=first[i];j!=-1;j=nex[j])
vis[to[j]]=1;
}
}
for(int i=1;i<=n;i++)
if(vis[i]==0) {cout<<"NO"<<endl<<i<<endl;break;}
}
return 0;
}