数字金字塔(动态规划)

问题描述:

观察下面的数字金字塔,查找从最高点到底部任意结束的路径,使路径经过的数字之和最大。每一步可以从当前点走到左下方的点或者右下方的点。

                         13

                   11         8

             12          7          26

       6          14          15          8

12          7          13         24         11

(每个点与左下方和右下方有连接线,请自己想象喔!!)

最优路线:13-8-26-15-24=86.

本题介绍四种方法给大家,有助于大家对动态规划有更深入的了解。


方法一:搜索

路径起点终点明确,走法固定,可以考虑搜索解决。

定义递归函数void  dfs(int x,int y,int curr),表示从(1,1)走到点(x,y)的权值和curr。

当x=n时,到达边界。用所得的curr和ans比较,如果curr比较大,更新ans的值。

如果x<n,继续递归,dfs(x+1,y,curr+a[x+1][y])和dfs(x+1,y+1,a[x+1][y+1])。


参考程序:

#include<iostream>
using namespace std;
int a[1010][1010],ans=0;
int n;//输入数塔层数n
void dfs(int x,int y,int curr)
{
	if(x==n)
	{
		if(curr>ans) ans=curr;
		return ;
	}
	dfs(x+1,y,curr+a[x+1][y]);
	dfs(x+1,y+1,curr+a[x+1][y+1]); 
}
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=i;j++)
			cin>>a[i][j];
	dfs(1,1,a[1][1]); 
	cout<<ans<<endl; 
	return 0;
}

此方法实际把所有的路径都走了一遍,由于每条路径有n-1步组成,每一步有左下,右下两种选择,路径总数为2n-1   时间复杂度为O(2n-1),


方法二:记忆化搜索

方法一有严重的问题,当n比较大时会花费太多时间,因为它进行了重复的搜索。如一条路径为13-11-12-6-12,另一条为13-11-12-6-7,对于11,12,6这些点进行了重复的搜索。我们完全可以在第一次搜索这些点时,就将这些点到终点的最大权值和记录下来,当我们再次到达这个点,就可以直接调用,不用重复搜索,这种方法就叫记忆化搜索。

因此,我们需要重新定义递归函数dfs。定义dfs(int x,int y)表示(x,y)到终点的最大权值和,最后的答案就是dfs(1,1).

为了避免重复搜索,我们开设一个数组dg[x][y]表示(x,y)点到终点的最大权值。


参考程序:

#include<iostream>
using namespace std;
int a[550][550],dg[550][550];
int n;
int dfs(int x,int y)
{
	if(dg[x][y]==-1)//判断是否已经计算过 
	{
		if(x==n)  dg[x][y]=a[x][y];
		else dg[x][y]=max(dfs(x+1,y),dfs(x+1,y+1))+a[x][y];
	}
	return dg[x][y];//计算过直接返回 
}
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=i;j++)
		{
			cin>>a[i][j];
			dg[i][j]=-1;
		}	
	dfs(1,1);
	cout<<dg[1][1]<<endl;
	return 0;
}


由于每一个点都只计算过一次,且是O(1)的时间,所以这种方法的时间复杂度为O(N*N)(n的平方)


方法三:动态规划(顺推法)

方法二的记忆化搜索,从本质来讲已经算是动态规划了。下面从动态规划的角度分析解题过程。

1.确定状态:

题目求解(1,1)到最底层路径的最大权值,路径起点固定,终点和中间点不确定,因此定义dg[x][y]表示从(1,1)出发到(x,y)路径的最大权值和。最终答案就是寻找最底层的最大值,ans=max{dg[n][1],dg[n][2],dg[n][3]...dg[n][n]}.

2.确定状态转移方程和边界条件

不去考虑(1,1)到(x,y)中间是怎么走的,只需要考虑(x,y)上一步是怎么来的,上一步可能是(x-1,y),也可能是(x-1,y-1),因此dg[x][y]的最大值就是上一步的最大权值和:max{dg[x-1][y],dg[x-1][y-1]),再加上自己的权值a[x][y]。

所以状态转移方程就是:dg[x][y]=max{dg[x-1][y],dg[x-1][y-1]}+a[i][j]。

与递归一样,我们也需要终止条件,防止无限递归下去。我们发现dg[x][y]的值取决于dh[x-1][y],dg[x-1][y-1],随着递归的深入,最后一定会递归到dg[1][1],dg[1][1]不能再使用状态转移方程了,所以给dg[1][1]附一个初值,即a[1][1]。


参考程序

#include<iostream>
using namespace std;
int a[550][550],dg[550][550];
int n;
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=i;j++)
			cin>>a[i][j];
	dg[1][1]=a[1][1];	
	for(int i=2;i<=n;i++)
	{
		for(int j=1;j<=i;j++)
		{
			dg[i][j]=max(dg[i-1][j-1],dg[i-1][j])+a[i][j];
		}
	 } 
	 int ans=0;
	 for(int i=1;i<=n;i++)
	 	ans=max(ans,dg[n][i]);
	cout<<ans<<endl;
	return 0;
}


这种方法的时间复杂度一样是O(n*n)(n的平方)


方法四:动态规划(逆推)

从根节点,最底层的点出发,向上走,选择它上一层两个方向的最大值为最大的路径,然后从n-1层继续向上,找自己两个方向的最大值,一直到(1,1)。

动态规划求解过程就可以归纳为:自顶向下分析,自底向上计算。

下面具体分析整个过程,大家就明白了。

以问题描述中的样例为例。

第4层  6  14  15  8

6这个点要找最大路径,就要选择和它连接12和7中的最大值,同理14选择7和13中最大值,15选择13和24中最大值,8选择24和11中最大值,他们分别选择两个方向的最大值,然后第4层就更新为了

18  27  39  32

同理第三层12  7  26

寻找两个方向的最大值,不过两个方向的值已经更新,选择新的值中的最大值,12选择18和27,7选择27和39,26选择39和32

得到第三层为39  46  65

第二层 11  8

更新为57  73

最后第一层选择57和73,a[1][1]就为73+13=86,即最后的答案。


参考程序:

#include<iostream>
using namespace std;
int a[550][550];
int n;
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=i;j++)
			cin>>a[i][j];	
	for(int i=n-1;i>=1;i--)
	{
		for(int j=1;j<=i;j++)
			a[i][j]+=max(a[i+1][j],a[i+1][j+1]);//寻找最大的路径 
	 } 
	cout<<a[1][1]<<endl;
	return 0;
}






  • 5
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值