【题解】「POJ2002」Squares(哈希表)

题面

【题目描述】
给出平面上一些点的坐标,统计由这些点可以组成多少个正方形。注意:正方形的边不一定平行于坐标轴。
【输入】
输入包括多组测试数据。每组的第一行是一个整数n (1 <= n <= 1000),表示平面上点的数目,接下来n行,每行包括两个整数,分别给出一个点在平面上的x坐标和y坐标。输入保证:平面上点的位置是两两不同的,而且坐标的绝对值都不大于50000。最后一组输入数据中n = 0,这组数据表示输入的结束,不用进行处理。
【输出】
对每组输入数据,输出一行,表示这些点能够组成的正方形的数目。
【样例输入】

4
1 0
0 1
1 1
0 0
9
0 0
1 0
2 0
0 2
1 2
2 2
0 1
1 1
2 1
4
-2 5
3 7
0 0
5 2
0

【样例输出】

1
6
1

算法分析

哈希表
如果枚举四个点,时间复杂度为 O ( N 4 ) O(N^4) O(N4),严重超时。
对于一个正方形,有一个特性,知道任意两点,就可以知道其他两点。因此可以枚举其中两个点,计算出另外两个点,判断另外两个点是否存在。
判断某个点是否存在,使用哈希表,时间复杂度 O ( N 2 ) O(N^2) O(N2)

参考程序

#include<bits/stdc++.h> 
#define N 1000100 
#define M 999991
#define ll long long 
using namespace std;
int h[N],nex[N], xx[N],yy[N],tot;
ll x[1010],y[1010];
void H(ll i,ll j)
{
    ll s=i*i+j*j;//哈希值  
    s=s%M;
    nex[++tot]=h[s];		//链表解决冲突
    h[s]=tot;			//记录哈希值为s的横坐标,纵坐标
    xx[tot]=i;
    yy[tot]=j;
     
} 
int check(ll i,ll j)
{
    ll s=i*i+j*j;		
    s=s%M;				
    //cout<<i<<" "<<j<<" "<<"="<<s<<endl; 
    for(int k=h[s];k!=-1;k=nex[k])		
    {
        if(xx[k]==i&&yy[k]==j) return 1;
    }
    return 0;
     
}
int main()
{
    while(1)
    {
        memset(h,-1,sizeof(h));
        int n,ans=0;
        scanf("%d",&n);
        if(n==0) break;
        for(int i=1;i<=n;i++)
        {
            scanf("%lld%lld",&x[i],&y[i]);
            H(x[i],y[i]);       //每个点使用hash表标记是否出现 
        }   
        for(int i=1;i<=n;i++)//根据两个点计算另外两个点 
        {
            for(int j=1;j<=n;j++)
            {
                if(i==j) continue; 
                ll a,b,c,d;
                a=x[j]-(y[j]-y[i]);
                b=y[j]+x[j]-x[i];
                c=x[i]-(y[j]-y[i]);
                d=y[i]+x[j]-x[i];
                if(check(a,b)&&check(c,d)) ans++; 
            }
        }
        printf("%d\n",ans/4);
    }
    return 0;
} 
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
POJ3635是一道经典的学题,需要使用一些学知识和算法进解决。 题目描述: 给定四个正整 a、b、p 和 k,求 a^b^p mod k 的值。 解题思路: 首先,我们可以将指 b^p 写成二进制形式:b^p = c0 * 2^0 + c1 * 2^1 + c2 * 2^2 + ... + ck * 2^k,其中 ci 为二进制的第 i 位。 然后,我们可以通过快速幂算法来计算 a^(2^i) mod k 的值。具体来说,我们可以用一个变量 x 来存储 a^(2^i) mod k 的值,然后每次将 i 加 1,如果 ci 为 1,则将 x 乘上 a^(2^i) mod k,最后得到 a^b^p mod k 的值。 代码实现: 以下是 Java 的代码实现: import java.util.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger a = sc.nextBigInteger(); BigInteger b = sc.nextBigInteger(); BigInteger p = sc.nextBigInteger(); BigInteger k = sc.nextBigInteger(); BigInteger ans = BigInteger.ONE; for (int i = 0; i < p.bitLength(); i++) { if (b.testBit(i)) { ans = ans.multiply(a.modPow(BigInteger.ONE.shiftLeft(i), k)).mod(k); } } System.out.println(ans); } } 其中,bitLength() 函用于获取二进制的位,testBit() 函用于判断二进制的第 i 位是否为 1,modPow() 函用于计算 a^(2^i) mod k 的值,multiply() 函用于计算两个 BigInteger 对象的乘积,mod() 函用于计算模。 时间复杂度: 快速幂算法的时间复杂度为 O(log b^p),其中 b^p 为指。由于 b^p 的位不超过 32,因此时间复杂度为 O(log 32) = O(1)。 总结: POJ3635 是一道经典的学题,需要使用快速幂算法来求解。在实现时,需要注意 BigInteger 类的使用方法,以及快速幂算法的细节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值