【大学生数学竞赛】2019年第十一届全国大学生数学竞赛初赛非数学专业试题解答

【大学生数学竞赛】2019年第十一届全国大学生数学竞赛初赛非数学专业试题解答

试题

一、填空题(满分30分,共5小题,每小题6分)

(1) 计算极限

lim ⁡ x → 0 ln ⁡ ( e sin ⁡ x + 1 − cos ⁡ x 3 ) − sin ⁡ x a r c t a n ( 4 1 − cos ⁡ x 3 ) = _ _ _ _ _ _ . \lim_{x \rightarrow0}\dfrac{\ln(e^{\sin x}+\sqrt[3]{1-\cos x})-\sin x}{arctan(4\sqrt[3]{1-\cos x})}= \_\_\_\_\_\_. x0limarctan(431cosx )ln(esinx+31cosx )sinx=______.

(2) 根据隐函数求不定积分

设隐函数 y = y ( x ) y=y(x) y=y(x)由方程 y 2 ( x − y ) = x 2 y^2(x-y)=x^2 y2(xy)=x2所确定,则 ∫ d x y 2 = _ _ _ _ _ _ . \int{\dfrac{\mathrm{d} x}{y^2}}=\_\_\_\_\_\_. y2dx=______.

(3) 求定积分

定积分 ∫ 0 π 2 e x ( 1 + sin ⁡ x ) 1 + cos ⁡ x d x = _ _ _ _ _ _ . \int_{0}^{\frac{\pi}{2}}\dfrac{e^x(1+\sin x)}{1+\cos x}\mathrm{d} x=\_\_\_\_\_\_. 02π1+cosxex(1+sinx)dx=______.

(4) 求二元函数原函数

已知 d u ( x , y ) = y d x − x d y 3 x 2 − 2 x y + 3 y 2 \mathrm{d} u(x,y)=\dfrac{y\mathrm{d}x-x\mathrm{d}y}{3x^2-2xy+3y^2} du(x,y)=3x22xy+3y2ydxxdy,则 u ( x , y ) = _ _ _ _ _ _ . u(x,y)=\_\_\_\_\_\_. u(x,y)=______.

(5) 求空间曲面参数值

a , b , c , μ > 0 a,b,c,\mu > 0 a,b,c,μ>0, 曲面 x y z = μ xyz=\mu xyz=μ与曲面
x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1
相切,则 μ = _ _ _ _ _ _ . \mu=\_\_\_\_\_\_. μ=______.

二、(满分14分)计算三重积分 ∭ Ω x y z x 2 + y 2 d x d y d z \iiint_{\Omega}\dfrac{xyz}{x^2+y^2}\mathrm{d}x\mathrm{d}y\mathrm{d}z Ωx2+y2xyzdxdydz,其中 Ω \Omega Ω是由曲面 ( x 2 + y 2 + z 2 ) 2 = 2 x y (x^2+y^2+z^2)^2=2xy (x2+y2+z2)2=2xy围成的区域在第一卦限部分.

三、(满分14分)设 f ( x ) f(x) f(x) [ 0 , + ∞ ) [0,+\infin) [0,+)上可微, f ( 0 ) = 0 f(0)=0 f(0)=0,且存在常数 A > 0 A>0 A>0,使得 ∣ f ′ ( x ) ∣ ≤ A ∣ f ( x ) ∣ |f'(x)|\le A|f(x)| f(x)Af(x) [ 0 , + ∞ ) [0,+\infin) [0,+)上成立,试证明在 ( 0 , + ∞ ) (0,+\infin) (0,+)上有 f ( x ) ≡ 0 f(x)\equiv0 f(x)0.

四、(满分14分)计算积分 I = ∫ 0 2 π d ϕ ∫ 0 π e sin ⁡ θ ( cos ⁡ ϕ − sin ⁡ ϕ ) sin ⁡ θ d θ I=\int_0^{2\pi}\mathrm{d}\phi \int_0^{\pi} e^{\sin \theta(\cos \phi - \sin \phi)}\sin \theta \mathrm{d} \theta I=02πdϕ0πesinθ(cosϕsinϕ)sinθdθ.

五、(满分14分)设 f ( x ) f(x) f(x)是仅有正实根的多项式函数,满足 f ′ ( x ) f ( x ) = − ∑ n = 0 + ∞ c n x n \dfrac{f'(x)}{f(x)}=-\sum_{n=0}^{+\infin}c_nx^n f(x)f(x)=n=0+cnxn,证明: c n > 0 ( n ≥ 0 ) c_n>0(n \ge 0) cn>0(n0),极限 lim ⁡ n → + ∞ 1 c n n \lim_{n\rightarrow +\infin}\dfrac{1}{\sqrt[n]{c_n}} limn+ncn 1存在,且等于 f ( x ) f(x) f(x)的最小根.

六、(满分14分)设 f ( x ) f(x) f(x) [ 0 , + ∞ ) [0,+\infin) [0,+)上具有连续导数,满足 3 [ 3 + f 2 ( x ) ] f ′ ( x ) = 2 [ 1 + f 2 ( x ) ] 2 e − x 2 3[3+f^2(x)]f'(x)=2[1+f^2(x)]^2e^{-x^2} 3[3+f2(x)]f(x)=2[1+f2(x)]2ex2,且 f ( 0 ) ≤ 1 f(0)\le 1 f(0)1.证明:存在常数 M > 0 M>0 M>0,使得 x ∈ [ 0 , + ∞ ) x\in [0,+\infin) x[0,+)时,恒有 ∣ f ( x ) ∣ ≤ M \left|f(x)\right|\le M f(x)M.

解答

一、填空题(满分30分,共5小题,每小题6分)

(1)计算极限

lim ⁡ x → 0 ln ⁡ ( e sin ⁡ x + 1 − cos ⁡ x 3 ) − sin ⁡ x a r c t a n ( 4 1 − cos ⁡ x 3 ) = _ _ _ _ _ _ . \lim_{x \rightarrow0}\dfrac{\ln(e^{\sin x}+\sqrt[3]{1-\cos x})-\sin x}{arctan(4\sqrt[3]{1-\cos x})}= \_\_\_\_\_\_. x0limarctan(431cosx )ln(esinx+31cosx )sinx=______.

解:

lim ⁡ x → 0 ln ⁡ ( e sin ⁡ x + 1 − cos ⁡ x 3 ) − sin ⁡ x a r c t a n ( 4 1 − cos ⁡ x 3 ) \lim_{x \rightarrow0}\dfrac{\ln(e^{\sin x}+\sqrt[3]{1-\cos x})-\sin x}{arctan(4\sqrt[3]{1-\cos x})} x0limarctan(431cosx )ln(esinx+31cosx )sinx
= lim ⁡ x → 0 ln ⁡ ( e sin ⁡ x + 1 − cos ⁡ x 3 ) a r c t a n ( 4 1 − cos ⁡ x 3 ) − lim ⁡ x → 0 sin ⁡ x a r c t a n ( 4 1 − cos ⁡ x 3 ) =\lim_{x \rightarrow0}\dfrac{\ln(e^{\sin x}+\sqrt[3]{1-\cos x})}{arctan(4\sqrt[3]{1-\cos x})}-\lim_{x \rightarrow0}\dfrac{\sin x}{arctan(4\sqrt[3]{1-\cos x})} =x0limarctan(431cosx )ln(esinx+31cosx )x0limarctan(431cosx )sinx
若上面等式右边的两个极限分别存在,则等号成立.

可以使用 x → 0 x \rightarrow0 x0时的等价无穷小代换求解上面等式右边的两个极限.
lim ⁡ x → 0 ln ⁡ ( e sin ⁡ x + 1 − cos ⁡ x 3 ) a r c t a n ( 4 1 − cos ⁡ x 3 ) \lim_{x \rightarrow0}\dfrac{\ln(e^{\sin x}+\sqrt[3]{1-\cos x})}{arctan(4\sqrt[3]{1-\cos x})} x0limarctan(431cosx )ln(esinx+31cosx )
= lim ⁡ x → 0 e sin ⁡ x + 1 − cos ⁡ x 3 − 1 4 1 − cos ⁡ x 3 =\lim_{x \rightarrow0}\dfrac{e^{\sin x}+\sqrt[3]{1-\cos x}-1}{4\sqrt[3]{1-\cos x}} =x0lim431cosx esinx+31cosx 1
= lim ⁡ x → 0 e sin ⁡ x − 1 4 1 − cos ⁡ x 3 + lim ⁡ x → 0 1 − cos ⁡ x 3 4 1 − cos ⁡ x 3 =\lim_{x \rightarrow0}\dfrac{e^{\sin x}-1}{4\sqrt[3]{1-\cos x}}+\lim_{x \rightarrow0}\dfrac{\sqrt[3]{1-\cos x}}{4\sqrt[3]{1-\cos x}} =x0lim431cosx esinx1+x0lim431cosx 31cosx
若上面等式右边的两个极限分别存在,则等号成立.
显然, lim ⁡ x → 0 1 − cos ⁡ x 3 4 1 − cos ⁡ x 3 = 1 4 \lim_{x \rightarrow0}\dfrac{\sqrt[3]{1-\cos x}}{4\sqrt[3]{1-\cos x}}=\dfrac{1}{4} limx0431cosx 31cosx =41
lim ⁡ x → 0 e sin ⁡ x − 1 4 1 − cos ⁡ x 3 = lim ⁡ x → 0 sin ⁡ x 4 1 2 x 2 3 = lim ⁡ x → 0 x 4 1 2 x 2 3 = 0 \lim_{x \rightarrow0}\dfrac{e^{\sin x}-1}{4\sqrt[3]{1-\cos x}}=\lim_{x \rightarrow0}\dfrac{\sin x}{4\sqrt[3]{\frac{1}{2}x^2}}=\lim_{x \rightarrow0}\dfrac{x}{4\sqrt[3]{\frac{1}{2}x^2}}=0 limx0431cosx esinx1=limx04321x2 sinx=limx04321x2 x=0
因此
lim ⁡ x → 0 e sin ⁡ x + 1 − cos ⁡ x 3 − 1 4 1 − cos ⁡ x 3 = lim ⁡ x → 0 e sin ⁡ x − 1 4 1 − cos ⁡ x 3 + lim ⁡ x → 0 1 − cos ⁡ x 3 4 1 − cos ⁡ x 3 \lim_{x \rightarrow0}\dfrac{e^{\sin x}+\sqrt[3]{1-\cos x}-1}{4\sqrt[3]{1-\cos x}}=\lim_{x \rightarrow0}\dfrac{e^{\sin x}-1}{4\sqrt[3]{1-\cos x}}+\lim_{x \rightarrow0}\dfrac{\sqrt[3]{1-\cos x}}{4\sqrt[3]{1-\cos x}} x0lim431cosx esinx+31cosx 1=x0lim431cosx esinx1+x0lim431cosx 31cosx
= 0 + 1 4 = 1 4 =0+\dfrac{1}{4}=\dfrac{1}{4} =0+41=41

lim ⁡ x → 0 sin ⁡ x a r c t a n ( 4 1 − cos ⁡ x 3 ) = lim ⁡ x → 0 x 4 1 − cos ⁡ x 3 = lim ⁡ x → 0 x 4 1 2 x 2 3 = 0 \lim_{x \rightarrow0}\dfrac{\sin x}{arctan(4\sqrt[3]{1-\cos x})}=\lim_{x \rightarrow0}\dfrac{x}{4\sqrt[3]{1-\cos x}}=\lim_{x \rightarrow0}\dfrac{x}{4\sqrt[3]{\frac{1}{2}x^2}}=0 limx0arctan(431cosx )sinx=limx0431cosx x=limx04321x2 x=0

因此 lim ⁡ x → 0 ln ⁡ ( e sin ⁡ x + 1 − cos ⁡ x 3 ) − sin ⁡ x a r c t a n ( 4 1 − cos ⁡ x 3 ) = lim ⁡ x → 0 ln ⁡ ( e sin ⁡ x + 1 − cos ⁡ x 3 ) a r c t a n ( 4 1 − cos ⁡ x 3 ) − lim ⁡ x → 0 sin ⁡ x a r c t a n ( 4 1 − cos ⁡ x 3 ) \lim_{x \rightarrow0}\dfrac{\ln(e^{\sin x}+\sqrt[3]{1-\cos x})-\sin x}{arctan(4\sqrt[3]{1-\cos x})}=\lim_{x \rightarrow0}\dfrac{\ln(e^{\sin x}+\sqrt[3]{1-\cos x})}{arctan(4\sqrt[3]{1-\cos x})}-\lim_{x \rightarrow0}\dfrac{\sin x}{arctan(4\sqrt[3]{1-\cos x})} x0limarctan(431cosx )ln(esinx+31cosx )sinx=x0limarctan(431cosx )ln(esinx+31cosx )x0limarctan(431cosx )sinx
= 1 4 − 0 = 1 4 =\dfrac{1}{4}-0=\dfrac{1}{4} =410=41

(2)根据隐函数求不定积分

设隐函数 y = y ( x ) y=y(x) y=y(x)由方程 y 2 ( x − y ) = x 2 y^2(x-y)=x^2 y2(xy)=x2所确定,则 ∫ d x y 2 = _ _ _ _ _ _ . \int{\dfrac{\mathrm{d} x}{y^2}}=\_\_\_\_\_\_. y2dx=______.

思路:

对一个隐函数的含y表达式求积分或导数后,结果表达式中可能会同时含有x和y。

解决这类问题,通常需要对x和y做一个变换(如将y用x和中间变量t表示),然后将函数从隐函数形式变为参数方程的形式。这样x和y都可以用另一个中间变量t表示,然后就可以将所求积分的被积表达式进行代换,得到只含有t的被积表达式形式,之后运用一元函数积分学的知识求出积分,最后将t使用x和y回代即可得到最终的积分结果(t也可以被x和y表示)。

最后注意,不定积分千万不要忘记加C。

解:

y = t x y=tx y=tx,代入隐函数表达式,则有:
t 2 x 2 ( x − t x ) = x 2 t^2x^2(x-tx)=x^2 t2x2(xtx)=x2
化简得到:
x = 1 t 2 ( 1 − t ) x=\dfrac{1}{t^2(1-t)} x=t2(1t)1
因此,有:
y = t x = 1 t ( 1 − t ) y=tx=\dfrac{1}{t(1-t)} y=tx=t(1t)1

将x和y代入被积表达式,得到:
∫ d x y 2 \int{\dfrac{\mathrm{d} x}{y^2}} y2dx
= ∫ d ( 1 t 2 ( 1 − t ) ) 1 t 2 ( 1 − t ) 2 d t =\int \dfrac{\mathrm{d}( \dfrac{1}{t^2(1-t)})}{\dfrac{1}{t^2(1-t)^2}} \mathrm{d}t =t2(1t)21d(t2(1t)1)dt
= ∫ − 2 t − 3 ( 1 − t ) − 1 + t − 2 ( 1 − t ) − 2 1 t 2 ( 1 − t ) 2 d t =\int \dfrac{-2t^{-3}(1-t)^{-1}+t^{-2}(1-t)^{-2}}{\dfrac{1}{t^2(1-t)^2}} \mathrm{d}t =t2(1t)212t3(1t)1+t2(1t)2dt
= ∫ ( − 2 t − 1 ( 1 − t ) + 1 ) d t =\int (-2t^{-1}(1-t)+1) \mathrm{d}t =(2t1(1t)+1)dt
= ∫ ( 3 − 2 t ) d t =\int (3-\dfrac{2}{t}) \mathrm{d}t =(3t2)dt
= 3 t − 2 ln ⁡ ∣ t ∣ + C =3t-2\ln \left | t \right | + C =3t2lnt+C
由于 y = t x y=tx y=tx,因此代入上式得到:
∫ d x y 2 = 3 t − 2 ln ⁡ ∣ t ∣ + C \int{\dfrac{\mathrm{d} x}{y^2}}=3t-2\ln \left | t \right | + C y2dx=3t2lnt+C
= 3 y x − 2 ln ⁡ ∣ y x ∣ + C =3\dfrac{y}{x}-2\ln \left | \dfrac{y}{x} \right | + C =3xy2lnxy+C

(3) 求定积分

定积分 ∫ 0 π 2 e x ( 1 + sin ⁡ x ) 1 + cos ⁡ x d x = _ _ _ _ _ _ . \int_{0}^{\frac{\pi}{2}}\dfrac{e^x(1+\sin x)}{1+\cos x}\mathrm{d} x=\_\_\_\_\_\_. 02π1+cosxex(1+sinx)dx=______.

解:

∫ 0 π 2 e x ( 1 + sin ⁡ x ) 1 + cos ⁡ x d x \int_{0}^{\frac{\pi}{2}}\dfrac{e^x(1+\sin x)}{1+\cos x}\mathrm{d} x 02π1+cosxex(1+sinx)dx
= ∫ 0 π 2 e x 1 + cos ⁡ x d x + ∫ 0 π 2 e x sin ⁡ x 1 + cos ⁡ x d x = \int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\int_{0}^{\frac{\pi}{2}}\dfrac{e^x\sin x}{1+\cos x}\mathrm{d} x =02π1+cosxexdx+02π1+cosxexsinxdx
= ∫ 0 π 2 e x 1 + cos ⁡ x d x + ∫ 0 π 2 sin ⁡ x 1 + cos ⁡ x d e x = \int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\int_{0}^{\frac{\pi}{2}}\dfrac{\sin x}{1+\cos x}\mathrm{d} e^x =02π1+cosxexdx+02π1+cosxsinxdex
= ∫ 0 π 2 e x 1 + cos ⁡ x d x + e x sin ⁡ x 1 + cos ⁡ x ∣ 0 π 2 − ∫ 0 π 2 e x d sin ⁡ x 1 + cos ⁡ x = \int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\dfrac{e^x\sin x}{1+\cos x}\Big|^{\frac{\pi}{2}}_{0}-\int_{0}^{\frac{\pi}{2}}e^x\mathrm{d} \dfrac{\sin x}{1+\cos x} =02π1+cosxexdx+1+cosxexsinx02π02πexd1+cosxsinx
= ∫ 0 π 2 e x 1 + cos ⁡ x d x + e x sin ⁡ x 1 + cos ⁡ x ∣ 0 π 2 − ∫ 0 π 2 e x cos ⁡ x ( 1 + cos ⁡ x ) − sin ⁡ x ( − sin ⁡ x ) ( 1 + cos ⁡ x ) 2 d x =\int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\dfrac{e^x\sin x}{1+\cos x}\Big|^{\frac{\pi}{2}}_{0}-\int_{0}^{\frac{\pi}{2}}e^x \dfrac{\cos x(1+\cos x)-\sin x(-\sin x)}{(1+\cos x)^2}\mathrm{d}x =02π1+cosxexdx+1+cosxexsinx02π02πex(1+cosx)2cosx(1+cosx)sinx(sinx)dx
= ∫ 0 π 2 e x 1 + cos ⁡ x d x + e x sin ⁡ x 1 + cos ⁡ x ∣ 0 π 2 − ∫ 0 π 2 e x cos ⁡ x + cos ⁡ 2 x + sin ⁡ 2 x ( 1 + cos ⁡ x ) 2 d x =\int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\dfrac{e^x\sin x}{1+\cos x}\Big|^{\frac{\pi}{2}}_{0}-\int_{0}^{\frac{\pi}{2}}e^x \dfrac{\cos x+\cos^2 x+\sin^2 x}{(1+\cos x)^2}\mathrm{d}x =02π1+cosxexdx+1+cosxexsinx02π02πex(1+cosx)2cosx+cos2x+sin2xdx
= ∫ 0 π 2 e x 1 + cos ⁡ x d x + e x sin ⁡ x 1 + cos ⁡ x ∣ 0 π 2 − ∫ 0 π 2 e x cos ⁡ x + ( cos ⁡ 2 x + sin ⁡ 2 x ) ( 1 + cos ⁡ x ) 2 d x =\int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\dfrac{e^x\sin x}{1+\cos x}\Big|^{\frac{\pi}{2}}_{0}-\int_{0}^{\frac{\pi}{2}}e^x \dfrac{\cos x+(\cos^2 x+\sin^2 x)}{(1+\cos x)^2}\mathrm{d}x =02π1+cosxexdx+1+cosxexsinx02π02πex(1+cosx)2cosx+(cos2x+sin2x)dx
= ∫ 0 π 2 e x 1 + cos ⁡ x d x + e x sin ⁡ x 1 + cos ⁡ x ∣ 0 π 2 − ∫ 0 π 2 e x cos ⁡ x + 1 ( 1 + cos ⁡ x ) 2 d x =\int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\dfrac{e^x\sin x}{1+\cos x}\Big|^{\frac{\pi}{2}}_{0}-\int_{0}^{\frac{\pi}{2}}e^x \dfrac{\cos x+1}{(1+\cos x)^2}\mathrm{d}x =02π1+cosxexdx+1+cosxexsinx02π02πex(1+cosx)2cosx+1dx
= ∫ 0 π 2 e x 1 + cos ⁡ x d x + e x sin ⁡ x 1 + cos ⁡ x ∣ 0 π 2 − ∫ 0 π 2 e x 1 + cos ⁡ x d x =\int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\dfrac{e^x\sin x}{1+\cos x}\Big|^{\frac{\pi}{2}}_{0}-\int_{0}^{\frac{\pi}{2}} \dfrac{e^x}{1+\cos x}\mathrm{d}x =02π1+cosxexdx+1+cosxexsinx02π02π1+cosxexdx
= e x sin ⁡ x 1 + cos ⁡ x ∣ 0 π 2 =\dfrac{e^x\sin x}{1+\cos x}\Big|^{\frac{\pi}{2}}_{0} =1+cosxexsinx02π
= e π 2 =e^{\frac{\pi}{2}} =e2π

(4) 求二元函数原函数

已知 d u ( x , y ) = y d x − x d y 3 x 2 − 2 x y + 3 y 2 \mathrm{d} u(x,y)=\dfrac{y\mathrm{d}x-x\mathrm{d}y}{3x^2-2xy+3y^2} du(x,y)=3x22xy+3y2ydxxdy,则 u ( x , y ) = _ _ _ _ _ _ . u(x,y)=\_\_\_\_\_\_. u(x,y)=______.

解:

d u ( x , y ) = y d x − x d y 3 x 2 − 2 x y + 3 y 2 \mathrm{d} u(x,y)=\dfrac{y\mathrm{d}x-x\mathrm{d}y}{3x^2-2xy+3y^2} du(x,y)=3x22xy+3y2ydxxdy
= 1 y d x − x y 2 d y 3 ( x y ) 2 − 2 x y + 3 =\dfrac{\dfrac{1}{y}\mathrm{d}x-\dfrac{x}{y^2}\mathrm{d}y}{3(\dfrac{x}{y})^2-2\dfrac{x}{y}+3} =3(yx)22yx+3y1dxy2xdy
= d ( x y ) 3 ( x y ) 2 − 2 x y + 3 =\dfrac{\mathrm{d}(\dfrac{x}{y})}{3(\dfrac{x}{y})^2-2\dfrac{x}{y}+3} =3(yx)22yx+3d(yx)
= d ( x y − 1 3 ) 3 ( x y − 1 3 ) 2 + 8 3 =\dfrac{\mathrm{d}(\dfrac{x}{y}-\dfrac{1}{3})}{3(\dfrac{x}{y}-\dfrac{1}{3})^2+\dfrac{8}{3}} =3(yx31)2+38d(yx31)
= 1 2 2 d ( 3 x 2 2 y − 1 2 2 ) ( 3 x 2 2 y − 1 2 2 ) 2 + 1 =\dfrac{1}{2\sqrt{2}}\dfrac{\mathrm{d}(\frac{3x}{2\sqrt{2}y}-\frac{1}{2\sqrt{2}})}{(\frac{3x}{2\sqrt{2}y}-\frac{1}{2\sqrt{2}})^2+1} =22 1(22 y3x22 1)2+1d(22 y3x22 1)
= 1 2 2 arctan ⁡ ( 3 x 2 2 y − 1 2 2 ) + C =\dfrac{1}{2\sqrt{2}}\arctan(\frac{3x}{2\sqrt{2}y}-\frac{1}{2\sqrt{2}})+C =22 1arctan(22 y3x22 1)+C

(5) 求空间曲面参数值

a , b , c , μ > 0 a,b,c,\mu > 0 a,b,c,μ>0, 曲面 x y z = μ xyz=\mu xyz=μ与曲面
x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1
相切,则 μ = _ _ _ _ _ _ . \mu=\_\_\_\_\_\_. μ=______.

解:

曲面 x y z = μ xyz=\mu xyz=μ上任一点 P P P切平面的法向量为: ( y z , x z , x y ) ∣ P (yz,xz,xy)|_P (yz,xz,xy)P

曲面 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1上任一点 P P P切平面的法向量为: ( 2 x a 2 , 2 y b 2 , 2 z c 2 ) ∣ P (\frac{2x}{a^2},\frac{2y}{b^2},\frac{2z}{c^2})|_P (a22x,b22y,c22z)P

不妨设两曲面的切点为 Q ( x 0 , y 0 , z 0 ) Q(x_0,y_0,z_0) Q(x0,y0,z0),则有在Q点处,曲面 x y z = μ xyz=\mu xyz=μ和曲面 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1的法平面的切向量平行,也就是:

y 0 z 0 = λ 2 x 0 a 2 , x 0 z 0 = λ 2 y 0 b 2 , x 0 y 0 = λ 2 z 0 c 2 y_0z_0=\lambda\dfrac{2x_0}{a^2},x_0z_0=\lambda\dfrac{2y_0}{b^2},x_0y_0=\lambda\dfrac{2z_0}{c^2} y0z0=λa22x0,x0z0=λb22y0,x0y0=λc22z0

又因为Q在曲面 x y z = μ xyz=\mu xyz=μ上,因此有 x 0 y 0 z 0 = μ x_0y_0z_0=\mu x0y0z0=μ

x 0 y 0 z 0 = μ x_0y_0z_0=\mu x0y0z0=μ代入 y 0 z 0 = λ 2 x 0 a 2 , x 0 z 0 = λ 2 y 0 b 2 , x 0 y 0 = λ 2 z 0 c 2 y_0z_0=\lambda\dfrac{2x_0}{a^2},x_0z_0=\lambda\dfrac{2y_0}{b^2},x_0y_0=\lambda\dfrac{2z_0}{c^2} y0z0=λa22x0,x0z0=λb22y0,x0y0=λc22z0,得到:

μ x 0 = λ 2 x 0 a 2 , μ y 0 = λ 2 y 0 b 2 , μ z 0 = λ 2 z 0 c 2 \dfrac{\mu}{x_0}=\lambda\dfrac{2x_0}{a^2},\dfrac{\mu}{y_0}=\lambda\dfrac{2y_0}{b^2},\dfrac{\mu}{z_0}=\lambda\dfrac{2z_0}{c^2} x0μ=λa22x0,y0μ=λb22y0,z0μ=λc22z0

也就是:
μ = λ 2 x 0 2 a 2 , μ = λ 2 y 0 2 b 2 , μ = λ 2 z 0 2 c 2 \mu=\lambda\dfrac{2x_0^2}{a^2},\mu=\lambda\dfrac{2y_0^2}{b^2},\mu=\lambda\dfrac{2z_0^2}{c^2} μ=λa22x02,μ=λb22y02,μ=λc22z02

将上面三个式子相乘,得到:
μ 3 = λ 3 8 x 0 2 y 0 2 z 0 2 a 2 b 2 c 2 \mu^3=\lambda^3\dfrac{8x_0^2y_0^2z_0^2}{a^2b^2c^2} μ3=λ3a2b2c28x02y02z02

由于 x 0 y 0 z 0 = μ x_0y_0z_0=\mu x0y0z0=μ,因此代入上式有:
μ = λ 3 8 a 2 b 2 c 2 \mu=\lambda^3\dfrac{8}{a^2b^2c^2} μ=λ3a2b2c28

又因为Q在曲面 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1上,因此有 x 0 2 a 2 + y 0 2 b 2 + z 0 2 c 2 = 1 \frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}+\frac{z_0^2}{c^2}=1 a2x02+b2y02+c2z02=1

所以将之前 μ = λ 2 x 0 2 a 2 , μ = λ 2 y 0 2 b 2 , μ = λ 2 z 0 2 c 2 \mu=\lambda\dfrac{2x_0^2}{a^2},\mu=\lambda\dfrac{2y_0^2}{b^2},\mu=\lambda\dfrac{2z_0^2}{c^2} μ=λa22x02,μ=λb22y02,μ=λc22z02三个式子相加,得到:
3 μ = 2 λ ( x 0 2 a 2 + y 0 2 b 2 + z 0 2 c 2 ) = 2 λ 3\mu=2\lambda(\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}+\frac{z_0^2}{c^2})=2\lambda 3μ=2λ(a2x02+b2y02+c2z02)=2λ

因此有
μ = ( 3 μ 2 ) 3 8 a 2 b 2 c 2 \mu=(\dfrac{3\mu}{2})^3\dfrac{8}{a^2b^2c^2} μ=(23μ)3a2b2c28
也就是
μ = 27 μ 3 8 8 a 2 b 2 c 2 = 27 μ 3 a 2 b 2 c 2 \mu=\dfrac{27\mu^3}{8}\dfrac{8}{a^2b^2c^2}=\dfrac{27\mu^3}{a^2b^2c^2} μ=827μ3a2b2c28=a2b2c227μ3
因为 a , b , c , μ > 0 a,b,c,\mu > 0 a,b,c,μ>0, 因此
μ = a b c 3 3 \mu=\dfrac{abc}{3\sqrt{3}} μ=33 abc

二、(满分14分)计算三重积分 ∭ Ω x y z x 2 + y 2 d x d y d z \iiint_{\Omega}\dfrac{xyz}{x^2+y^2}\mathrm{d}x\mathrm{d}y\mathrm{d}z Ωx2+y2xyzdxdydz,其中 Ω \Omega Ω是由曲面 ( x 2 + y 2 + z 2 ) 2 = 2 x y (x^2+y^2+z^2)^2=2xy (x2+y2+z2)2=2xy围成的区域在第一卦限部分.

本题主要考察三重积分的概念与计算。

解:

对该三重积分进行球坐标变换,令 x = ρ sin ⁡ φ cos ⁡ θ , y = ρ sin ⁡ φ sin ⁡ θ , z = ρ cos ⁡ φ x=\rho \sin \varphi \cos \theta, y=\rho \sin \varphi \sin \theta, z=\rho \cos \varphi x=ρsinφcosθ,y=ρsinφsinθ,z=ρcosφ.由于要计算在第一卦限范围内的三重积分,因此 φ ∈ [ 0 , π 2 ] , θ ∈ [ 0 , π 2 ] \varphi \in [0,\frac{\pi}{2}],\theta \in[0,\frac{\pi}{2}] φ[0,2π],θ[0,2π],则曲面方程 ( x 2 + y 2 + z 2 ) 2 = 2 x y (x^2+y^2+z^2)^2=2xy (x2+y2+z2)2=2xy在球坐标变换后变为 ρ 2 = 2 sin ⁡ 2 φ sin ⁡ θ cos ⁡ θ \rho^2=2\sin^2\varphi\sin\theta\cos\theta ρ2=2sin2φsinθcosθ,因此如果先枚举 φ \varphi φ θ \theta θ,则 ρ ∈ [ 0 , 2 sin ⁡ 2 φ sin ⁡ θ cos ⁡ θ ] \rho \in[0,\sqrt{2\sin^2\varphi\sin\theta\cos\theta}] ρ[0,2sin2φsinθcosθ ],因此得到:

∭ Ω x y z x 2 + y 2 d x d y d z \iiint_{\Omega}\dfrac{xyz}{x^2+y^2}\mathrm{d}x\mathrm{d}y\mathrm{d}z Ωx2+y2xyzdxdydz
= ∫ 0 π 2 sin ⁡ φ d φ ∫ 0 π 2 d θ ∫ 0 2 sin ⁡ 2 φ sin ⁡ θ cos ⁡ θ ρ 2 d ρ ρ 3 sin ⁡ 2 φ cos ⁡ φ sin ⁡ θ cos ⁡ θ ρ 2 sin ⁡ 2 φ =\int_{0}^{\frac{\pi}{2}}\sin\varphi\mathrm{d}\varphi\int_0^{\frac{\pi}{2}}\mathrm{d}\theta\int_{0}^{\sqrt{2\sin^2\varphi\sin\theta\cos\theta}}\rho^2\mathrm{d}\rho\dfrac{\rho^3\sin^2\varphi\cos\varphi\sin\theta\cos\theta}{\rho^2\sin^2\varphi} =02πsinφdφ02πdθ02sin2φsinθcosθ ρ2dρρ2sin2φρ3sin2φcosφsinθcosθ
= ∫ 0 π 2 sin ⁡ φ d φ ∫ 0 π 2 d θ ∫ 0 2 sin ⁡ 2 φ sin ⁡ θ cos ⁡ θ ρ 3 cos ⁡ φ sin ⁡ θ cos ⁡ θ d ρ =\int_{0}^{\frac{\pi}{2}}\sin\varphi\mathrm{d}\varphi\int_0^{\frac{\pi}{2}}\mathrm{d}\theta\int_{0}^{\sqrt{2\sin^2\varphi\sin\theta\cos\theta}}\rho^3\cos\varphi\sin\theta\cos\theta\mathrm{d}\rho =02πsinφdφ02πdθ02sin2φsinθcosθ ρ3cosφsinθcosθdρ
= ∫ 0 π 2 sin ⁡ φ cos ⁡ φ d φ ∫ 0 π 2 sin ⁡ θ cos ⁡ θ d θ ∫ 0 2 sin ⁡ 2 φ sin ⁡ θ cos ⁡ θ ρ 3 d ρ =\int_{0}^{\frac{\pi}{2}}\sin\varphi\cos\varphi\mathrm{d}\varphi\int_0^{\frac{\pi}{2}}\sin\theta\cos\theta\mathrm{d}\theta\int_{0}^{\sqrt{2\sin^2\varphi\sin\theta\cos\theta}}\rho^3\mathrm{d}\rho =02πsinφcosφdφ02πsinθcosθdθ02sin2φsinθcosθ ρ3dρ
= ∫ 0 π 2 sin ⁡ φ cos ⁡ φ d φ ∫ 0 π 2 sin ⁡ θ cos ⁡ θ d θ ( 1 4 ρ 4 ) ∣ 0 2 sin ⁡ 2 φ sin ⁡ θ cos ⁡ θ =\int_{0}^{\frac{\pi}{2}}\sin\varphi\cos\varphi\mathrm{d}\varphi\int_0^{\frac{\pi}{2}}\sin\theta\cos\theta\mathrm{d}\theta(\frac{1}{4}\rho^4)\big|_{0}^{\sqrt{2\sin^2\varphi\sin\theta\cos\theta}} =02πsinφcosφdφ02πsinθcosθdθ(41ρ4)02sin2φsinθcosθ
= ∫ 0 π 2 sin ⁡ φ cos ⁡ φ d φ ∫ 0 π 2 sin ⁡ θ cos ⁡ θ d θ sin ⁡ 4 φ sin ⁡ 2 θ cos ⁡ 2 θ =\int_{0}^{\frac{\pi}{2}}\sin\varphi\cos\varphi\mathrm{d}\varphi\int_0^{\frac{\pi}{2}}\sin\theta\cos\theta\mathrm{d}\theta\sin^4\varphi\sin^2\theta\cos^2\theta =02πsinφcosφdφ02πsinθcosθdθsin4φsin2θcos2θ
= ∫ 0 π 2 sin ⁡ 5 φ cos ⁡ φ d φ ∫ 0 π 2 sin ⁡ 3 θ cos ⁡ 3 θ d θ =\int_{0}^{\frac{\pi}{2}}\sin^5\varphi\cos\varphi\mathrm{d}\varphi\int_0^{\frac{\pi}{2}}\sin^3\theta\cos^3\theta\mathrm{d}\theta =02πsin5φcosφdφ02πsin3θcos3θdθ
= ∫ 0 π 2 sin ⁡ 5 φ d ( sin ⁡ φ ) ∫ 0 π 2 sin ⁡ 3 θ cos ⁡ 3 θ d θ =\int_{0}^{\frac{\pi}{2}}\sin^5\varphi\mathrm{d}(\sin\varphi)\int_0^{\frac{\pi}{2}}\sin^3\theta\cos^3\theta\mathrm{d}\theta =02πsin5φd(sinφ)02πsin3θcos3θdθ
= 1 6 ( sin ⁡ 6 φ ) ∣ 0 π 2 ∫ 0 π 2 sin ⁡ 3 θ cos ⁡ 3 θ d θ =\frac{1}{6}(\sin^6\varphi)\big|_{0}^{\frac{\pi}{2}}\int_0^{\frac{\pi}{2}}\sin^3\theta\cos^3\theta\mathrm{d}\theta =61(sin6φ)02π02πsin3θcos3θdθ
= 1 6 ∫ 0 π 2 sin ⁡ 3 θ cos ⁡ 2 θ d ( sin ⁡ θ ) =\frac{1}{6}\int_0^{\frac{\pi}{2}}\sin^3\theta\cos^2\theta\mathrm{d}(\sin\theta) =6102πsin3θcos2θd(sinθ)
= 1 6 ∫ 0 π 2 sin ⁡ 3 θ ( 1 − sin ⁡ 2 θ ) d ( sin ⁡ θ ) =\frac{1}{6}\int_0^{\frac{\pi}{2}}\sin^3\theta(1-\sin^2\theta)\mathrm{d}(\sin\theta) =6102πsin3θ(1sin2θ)d(sinθ)
= 1 6 ∫ 0 π 2 sin ⁡ 3 θ − sin ⁡ 5 θ d ( sin ⁡ θ ) =\frac{1}{6}\int_0^{\frac{\pi}{2}}\sin^3\theta-\sin^5\theta\mathrm{d}(\sin\theta) =6102πsin3θsin5θd(sinθ)
= 1 6 ( 1 4 sin ⁡ 4 θ − 1 6 sin ⁡ 6 θ ) ∣ 0 π 2 =\frac{1}{6}(\frac{1}{4}\sin^4\theta-\frac{1}{6}\sin^6\theta)\big|_0^{\frac{\pi}{2}} =61(41sin4θ61sin6θ)02π
= 1 6 ( 1 4 − 1 6 ) =\frac{1}{6}(\frac{1}{4}-\frac{1}{6}) =61(4161)
= 1 72 =\frac{1}{72} =721

三、(满分14分)设 f ( x ) f(x) f(x) [ 0 , + ∞ ) [0,+\infin) [0,+)上可微, f ( 0 ) = 0 f(0)=0 f(0)=0,且存在常数 A > 0 A>0 A>0,使得 ∣ f ′ ( x ) ∣ ≤ A ∣ f ( x ) ∣ |f'(x)|\le A|f(x)| f(x)Af(x) [ 0 , + ∞ ) [0,+\infin) [0,+)上成立,试证明在 ( 0 , + ∞ ) (0,+\infin) (0,+)上有 f ( x ) ≡ 0 f(x)\equiv0 f(x)0.

本题主要考察微分中值定理。

证明函数恒等于0,可以证明函数在某个区间内的最大值等于0。证明函数在某个区间的最大值等于0,可以通过证明函数在某个区间内最大值的绝对值小于等于该绝对值乘以一个小于1的比例系数。

证明函数在区间 [ 0 , + ∞ ) [0,+\infin) [0,+)上满足某个性质,也可以将区间 [ 0 , + ∞ ) [0,+\infin) [0,+)分为若干段,分别证明或递推证明在这若干段区间上都满足性质。

证明:

x 0 ∈ [ 0 , 1 2 A ] , 使 得 ∣ f ( x 0 ) ∣ = max ⁡ { ∣ f ( x ) ∣ ∣ x ∈ [ 0 , 1 2 A ] } x_0 \in [0,\frac{1}{2A}],使得|f(x_0)|=\max \left \{ |f(x)| \big| x \in [0,\frac{1}{2A}]\right\} x0[0,2A1],使f(x0)=max{f(x)x[0,2A1]}

因为 f ( x ) f(x) f(x) [ 0 , 1 2 A ] [0,\frac{1}{2A}] [0,2A1]可微,因此 f ( x ) f(x) f(x) [ 0 , 1 2 A ] [0,\frac{1}{2A}] [0,2A1]内连续.

因为 f ( x ) f(x) f(x) ( 0 , 1 2 A ) (0,\frac{1}{2A}) (0,2A1)可微,因此 f ( x ) f(x) f(x) ( 0 , 1 2 A ) (0,\frac{1}{2A}) (0,2A1)内也可导.

由于 f ( x ) f(x) f(x) [ 0 , 1 2 A ] [0,\frac{1}{2A}] [0,2A1]内连续,在 ( 0 , 1 2 A ) (0,\frac{1}{2A}) (0,2A1)内可导,因此根据拉格朗日中值定理, ∃ ξ ∈ ( 0 , 1 2 A ) \exists \xi \in (0,\frac{1}{2A}) ξ(0,2A1),使得:

f ( x 0 ) − f ( 0 ) = f ′ ( ξ ) ( x 0 − 0 ) f(x_0)-f(0)=f'(\xi)(x_0-0) f(x0)f(0)=f(ξ)(x00)

因为 f ( 0 ) = 0 f(0)=0 f(0)=0,因此有

f ( x 0 ) = f ′ ( ξ ) x 0 f(x_0)=f'(\xi)x_0 f(x0)=f(ξ)x0

因此

∣ f ( x 0 ) ∣ = ∣ f ′ ( ξ ) x 0 ∣ = ∣ f ′ ( ξ ) ∣ x 0 ≤ A ∣ f ( ξ ) ∣ x 0 ≤ A ∣ f ( x 0 ) ∣ x 0 ≤ A ∣ f ( x 0 ) ∣ 1 2 A = 1 2 ∣ f ( x 0 ) ∣ |f(x_0)|=|f'(\xi)x_0|=|f'(\xi)|x_0\le A|f(\xi)|x_0 \le A|f(x_0)|x_0\le A|f(x_0)|\frac{1}{2A}=\frac{1}{2}|f(x_0)| f(x0)=f(ξ)x0=f(ξ)x0Af(ξ)x0Af(x0)x0Af(x0)2A1=21f(x0)

也就是 ∣ f ( x 0 ) ∣ ≤ 1 2 ∣ f ( x 0 ) ∣ |f(x_0)| \le \frac{1}{2}|f(x_0)| f(x0)21f(x0)

所以 1 2 ∣ f ( x 0 ) ∣ ≤ 0 \frac{1}{2}|f(x_0)| \le 0 21f(x0)0

又因为 ∣ f ( x 0 ) ∣ ≥ 0 |f(x_0)| \ge 0 f(x0)0

因此 ∣ f ( x 0 ) ∣ = 0 |f(x_0)| = 0 f(x0)=0

因此 ∀ x ∈ [ 0 , 1 2 A ] , f ( x ) ≡ 0 \forall x \in [0,\frac{1}{2A}], f(x) \equiv 0 x[0,2A1],f(x)0

递推可得,对于所有的 x ∈ [ k 2 A , k + 1 2 A ] , k = 0 , 1 , 2...... x \in [\frac{k}{2A},\frac{k+1}{2A}],k=0,1,2...... x[2Ak,2Ak+1],k=0,1,2......,都有 f ( x ) ≡ 0 f(x) \equiv 0 f(x)0

因此在 ( 0 , + ∞ ) (0,+\infin) (0,+)上有 f ( x ) ≡ 0 f(x)\equiv0 f(x)0

四、(满分14分)计算积分 I = ∫ 0 2 π d ϕ ∫ 0 π e sin ⁡ θ ( cos ⁡ ϕ − sin ⁡ ϕ ) sin ⁡ θ d θ I=\int_0^{2\pi}\mathrm{d}\phi \int_0^{\pi} e^{\sin \theta(\cos \phi - \sin \phi)}\sin \theta \mathrm{d} \theta I=02πdϕ0πesinθ(cosϕsinϕ)sinθdθ.

设球面 Σ : x 2 + y 2 + z 2 = 1 \Sigma:x^2+y^2+z^2=1 Σ:x2+y2+z2=1,由球面的参数方程
x = sin ⁡ θ cos ⁡ ϕ , y = sin ⁡ θ sin ⁡ ϕ , z = cos ⁡ θ x=\sin\theta\cos\phi,y=\sin\theta\sin\phi,z=\cos\theta x=sinθcosϕ,y=sinθsinϕ,z=cosθ


E = x θ 2 + y θ 2 + z θ 2 = ( cos ⁡ θ cos ⁡ ϕ ) 2 + ( cos ⁡ θ sin ⁡ ϕ ) 2 + ( − sin ⁡ θ ) 2 = cos ⁡ 2 θ cos ⁡ 2 ϕ + cos ⁡ 2 θ sin ⁡ 2 ϕ + sin ⁡ 2 θ = cos ⁡ 2 θ ( cos ⁡ 2 ϕ + sin ⁡ 2 ϕ ) + sin ⁡ 2 θ = cos ⁡ 2 θ + sin ⁡ 2 θ = 1 E=x_{\theta}^2+y_{\theta}^2+z_{\theta}^2=(\cos\theta\cos\phi)^2+(\cos\theta\sin\phi)^2+(-\sin\theta)^2=\cos^2\theta\cos^2\phi+\cos^2\theta\sin^2\phi+\sin^2\theta=\cos^2\theta(\cos^2\phi+\sin^2\phi)+\sin^2\theta=\cos^2\theta+\sin^2\theta=1 E=xθ2+yθ2+zθ2=(cosθcosϕ)2+(cosθsinϕ)2+(sinθ)2=cos2θcos2ϕ+cos2θsin2ϕ+sin2θ=cos2θ(cos2ϕ+sin2ϕ)+sin2θ=cos2θ+sin2θ=1
F = x θ x ϕ + y θ y ϕ + z θ z ϕ = ( cos ⁡ θ cos ⁡ ϕ ) ( − sin ⁡ θ sin ⁡ ϕ ) + ( cos ⁡ θ sin ⁡ ϕ ) ( sin ⁡ θ cos ⁡ ϕ ) + ( − sin ⁡ θ ) ⋅ 0 = − sin ⁡ θ cos ⁡ θ sin ⁡ ϕ cos ⁡ ϕ + sin ⁡ θ cos ⁡ θ sin ⁡ ϕ cos ⁡ ϕ = 0 F=x_{\theta}x_{\phi}+y_{\theta}y_{\phi}+z_{\theta}z_{\phi}=(\cos\theta\cos\phi)(-\sin\theta\sin\phi)+(\cos\theta\sin\phi)(\sin\theta\cos\phi)+(-\sin\theta)\cdot0=-\sin\theta\cos\theta\sin\phi\cos\phi+\sin\theta\cos\theta\sin\phi\cos\phi=0 F=xθxϕ+yθyϕ+zθzϕ=(cosθcosϕ)(sinθsinϕ)+(cosθsinϕ)(sinθcosϕ)+(sinθ)0=sinθcosθsinϕcosϕ+sinθcosθsinϕcosϕ=0
G = x ϕ 2 + y ϕ 2 + z ϕ 2 = ( − sin ⁡ θ sin ⁡ ϕ ) 2 + ( sin ⁡ θ cos ⁡ ϕ ) 2 + 0 2 = sin ⁡ 2 θ sin ⁡ 2 ϕ + sin ⁡ 2 θ cos ⁡ 2 ϕ = sin ⁡ 2 θ ( sin ⁡ 2 ϕ + cos ⁡ 2 ϕ ) = sin ⁡ 2 θ G=x_{\phi}^2+y_{\phi}^2+z_{\phi}^2=(-\sin\theta\sin\phi)^2+(\sin\theta\cos\phi)^2+0^2=\sin^2\theta\sin^2\phi+\sin^2\theta\cos^2\phi=\sin^2\theta(\sin^2\phi+\cos^2\phi)=\sin^2\theta G=xϕ2+yϕ2+zϕ2=(sinθsinϕ)2+(sinθcosϕ)2+02=sin2θsin2ϕ+sin2θcos2ϕ=sin2θ(sin2ϕ+cos2ϕ)=sin2θ

因此 d S = E G − F 2 d θ d ϕ = sin ⁡ 2 θ d θ d ϕ = ∣ sin ⁡ θ ∣ d θ d ϕ dS=\sqrt{EG-F^2}\mathrm{d}\theta\mathrm{d}\phi=\sqrt{\sin^2\theta}\mathrm{d}\theta\mathrm{d}\phi=\left|\sin\theta\right|\mathrm{d}\theta\mathrm{d}\phi dS=EGF2 dθdϕ=sin2θ dθdϕ=sinθdθdϕ

由于上面的球坐标变换中, θ ∈ [ 0 , π ] \theta \in [0,\pi] θ[0,π],因此 sin ⁡ θ ≥ 0 \sin\theta\ge 0 sinθ0,于是 d S = sin ⁡ θ d θ d ϕ dS=\sin\theta\mathrm{d}\theta\mathrm{d}\phi dS=sinθdθdϕ

I = ∫ 0 2 π d ϕ ∫ 0 π e sin ⁡ θ ( cos ⁡ ϕ − sin ⁡ ϕ ) sin ⁡ θ d θ I=\int_0^{2\pi}\mathrm{d}\phi \int_0^{\pi} e^{\sin \theta(\cos \phi - \sin \phi)}\sin \theta \mathrm{d} \theta I=02πdϕ0πesinθ(cosϕsinϕ)sinθdθ
= ∬ Σ e x − y d S =\iint_{\Sigma}e^{x-y}\mathrm{d}S =ΣexydS

之后有两种处理方法.

解法一:坐标变换法

做坐标变换 x = u + v 2 , y = u − v 2 , z = w x=\frac{u+v}{\sqrt{2}},y=\frac{u-v}{\sqrt{2}},z=w x=2 u+v,y=2 uv,z=w
Σ : x 2 + y 2 + z 2 = 1 \Sigma:x^2+y^2+z^2=1 Σ:x2+y2+z2=1变换为 Σ ′ : u 2 + v 2 + w 2 = 1 \Sigma':u^2+v^2+w^2=1 Σ:u2+v2+w2=1

∬ Σ e x − y d S = ∬ Σ ′ e 2 u ∣ J ∣ d S \iint_{\Sigma}e^{x-y}\mathrm{d}S=\iint_{\Sigma'}e^{\sqrt{2}u}\left|J\right|\mathrm{d}S ΣexydS=Σe2 uJdS

其中, J = D ( x , y , z ) D ( u , v , w ) = ∣ x u x v x w y u y v y w z u z v z w ∣ = ∣ 1 2 1 2 0 1 2 − 1 2 0 0 0 1 ∣ = − 1 J=\dfrac{\mathrm{D}(x,y,z)}{\mathrm{D}(u,v,w)}=\begin{vmatrix} x_u& x_v & x_w\\ y_u & y_v & y_w \\ z_u & z_v & z_w \end{vmatrix}=\begin{vmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{vmatrix}=-1 J=D(u,v,w)D(x,y,z)=xuyuzuxvyvzvxwywzw=2 12 102 12 10001=1
因此
∬ Σ ′ e 2 u ∣ J ∣ d S = ∬ Σ ′ e 2 u d S \iint_{\Sigma'}e^{\sqrt{2}u}\left|J\right|\mathrm{d}S=\iint_{\Sigma'}e^{\sqrt{2}u}\mathrm{d}S Σe2 uJdS=Σe2 udS

因为 Σ ′ : u 2 + v 2 + w 2 = 1 \Sigma':u^2+v^2+w^2=1 Σ:u2+v2+w2=1关于 u , v , w u,v,w u,v,w具有轮换对称性,因此有 ∬ Σ ′ e 2 u d S = ∬ Σ ′ e 2 w d S \iint_{\Sigma'}e^{\sqrt{2}u}\mathrm{d}S=\iint_{\Sigma'}e^{\sqrt{2}w}\mathrm{d}S Σe2 udS=Σe2 wdS

再做球坐标变换 u = sin ⁡ θ cos ⁡ ϕ , v = sin ⁡ θ sin ⁡ ϕ , w = cos ⁡ θ u=\sin\theta\cos\phi,v=\sin\theta\sin\phi,w=\cos\theta u=sinθcosϕ,v=sinθsinϕ,w=cosθ,因此有
∬ Σ ′ e 2 w d S = ∫ 0 2 π d ϕ ∫ 0 π e 2 cos ⁡ θ sin ⁡ θ d θ \iint_{\Sigma'}e^{\sqrt{2}w}\mathrm{d}S=\int_0^{2\pi}\mathrm{d}\phi\int_0^{\pi}e^{\sqrt{2}\cos\theta}\sin\theta\mathrm{d}\theta Σe2 wdS=02πdϕ0πe2 cosθsinθdθ
= − 1 2 ∫ 0 2 π d ϕ ∫ 0 π e 2 cos ⁡ θ d ( 2 cos ⁡ θ ) =\frac{-1}{\sqrt{2}}\int_0^{2\pi}\mathrm{d}\phi\int_0^{\pi}e^{\sqrt{2}\cos\theta}\mathrm{d}(\sqrt{2}\cos\theta) =2 102πdϕ0πe2 cosθd(2 cosθ)
= − 1 2 ∫ 0 2 π d ϕ ∫ 0 π d ( e 2 cos ⁡ θ ) =\frac{-1}{\sqrt{2}}\int_0^{2\pi}\mathrm{d}\phi\int_0^{\pi}\mathrm{d}(e^{\sqrt{2}\cos\theta}) =2 102πdϕ0πd(e2 cosθ)
= − 1 2 ∫ 0 2 π d ϕ ( e 2 cos ⁡ θ ) ∣ 0 π =\frac{-1}{\sqrt{2}}\int_0^{2\pi}\mathrm{d}\phi(e^{\sqrt{2}\cos\theta})\big|_0^{\pi} =2 102πdϕ(e2 cosθ)0π
= − 1 2 ∫ 0 2 π d ϕ ( e − 2 − e 2 ) =\frac{-1}{\sqrt{2}}\int_0^{2\pi}\mathrm{d}\phi(e^{-\sqrt{2}}-e^{\sqrt{2}}) =2 102πdϕ(e2 e2 )
= − 1 2 ( 2 π ) ( e − 2 − e 2 ) =\frac{-1}{\sqrt{2}}(2\pi)(e^{-\sqrt{2}}-e^{\sqrt{2}}) =2 1(2π)(e2 e2 )
= 2 π ( e 2 − e − 2 ) =\sqrt{2}\pi(e^{\sqrt{2}}-e^{-\sqrt{2}}) =2 π(e2 e2 )

解法二:微元法

设平面 P t : x − y 2 = t , − 1 ≤ t ≤ 1 P_t:\frac{x-y}{\sqrt{2}}=t,-1\le t \le1 Pt:2 xy=t,1t1,其中t为平面 P t P_t Pt被球面截下部分中心到原点距离.用平面 P t P_t Pt分割球面 Σ \Sigma Σ,球面在平面 P t , P t + d t P_t,P_{t+\mathrm{d}t} Pt,Pt+dt之间的部分形如圆台外表面状,记为 Σ t , t + d t \Sigma_{t,t+\mathrm{d}t} Σt,t+dt,被积函数在该微元上为 e x − y = e 2 t e^{x-y}=e^{\sqrt{2}t} exy=e2 t.

由于 Σ t , t + d t \Sigma_{t,t+\mathrm{d}t} Σt,t+dt的半径为 r t = 1 − t 2 r_t=\sqrt{1-t^2} rt=1t2 ,半径的增长率为:
d ( 1 − t 2 ) = − t 1 − t 2 d t \mathrm{d}(\sqrt{1-t^2})=\frac{-t}{\sqrt{1-t^2}}\mathrm{d}t d(1t2 )=1t2 tdt

也就是 Σ t , t + d t \Sigma_{t,t+\mathrm{d}t} Σt,t+dt上下底面半径之差.

记圆台外表面斜高为 h t h_t ht,则由微元法及勾股定理,得 ( d t ) 2 + ( d 1 − t 2 ) 2 = h t 2 (\mathrm{d}t)^2+(\mathrm{d}\sqrt{1-t^2})^2=h_t^2 (dt)2+(d1t2 )2=ht2,化简得到 h t = d t 1 − t 2 h_t=\dfrac{\mathrm{d}t}{\sqrt{1-t^2}} ht=1t2 dt

因此 Σ t , t + d t \Sigma_{t,t+\mathrm{d}t} Σt,t+dt的面积为 d S = 2 π r t h t = 2 π 1 − t 2 d t 1 − t 2 = 2 π d t \mathrm{d}S=2\pi r_th_t=2\pi \sqrt{1-t^2}\dfrac{\mathrm{d}t}{\sqrt{1-t^2}}=2\pi\mathrm{d}t dS=2πrtht=2π1t2 1t2 dt=2πdt

因此有
I = ∬ Σ e x − y d S = ∫ − 1 1 e 2 t 2 π d t I=\iint_{\Sigma}e^{x-y}\mathrm{d}S=\int_{-1}^{1}e^{\sqrt{2}t}2\pi\mathrm{d}t I=ΣexydS=11e2 t2πdt
= 2 π ∫ − 1 1 e 2 t d ( 2 t ) =\sqrt{2}\pi\int_{-1}^{1}e^{\sqrt{2}t}\mathrm{d}(\sqrt{2}t) =2 π11e2 td(2 t)
= 2 π ∫ − 1 1 d ( e 2 t ) =\sqrt{2}\pi\int_{-1}^{1}\mathrm{d}(e^{\sqrt{2}t}) =2 π11d(e2 t)
= 2 π ( e 2 t ) ∣ − 1 1 =\sqrt{2}\pi (e^{\sqrt{2}t})\big|_{-1}^{1} =2 π(e2 t)11
= 2 π ( e 2 − e − 2 ) =\sqrt{2}\pi(e^{\sqrt{2}}-e^{-\sqrt{2}}) =2 π(e2 e2 )

五、(满分14分)设 f ( x ) f(x) f(x)是仅有正实根的多项式函数,满足 f ′ ( x ) f ( x ) = − ∑ n = 0 + ∞ c n x n \dfrac{f'(x)}{f(x)}=-\sum_{n=0}^{+\infin}c_nx^n f(x)f(x)=n=0+cnxn,证明: c n > 0 ( n ≥ 0 ) c_n>0(n \ge 0) cn>0(n0),极限 lim ⁡ n → + ∞ 1 c n n \lim_{n\rightarrow +\infin}\dfrac{1}{\sqrt[n]{c_n}} limn+ncn 1存在,且等于 f ( x ) f(x) f(x)的最小根.

证明:由于 f ( x ) f(x) f(x)为仅有正实根的多项式函数,不妨设 f ( x ) f(x) f(x)的全部根的取值为 0 < a 1 < a 2 < . . . < a k 0<a_1<a_2<...<a_k 0<a1<a2<...<ak,这样有
f ( x ) = A ∏ i = 1 k ( x − a i ) r i f(x)=A\prod_{i=1}^{k}(x-a_i)^{r_i} f(x)=Ai=1k(xai)ri
其中 r i r_i ri为对应根 a i a_i ai的重数,满足 r i ∈ Z r_i \in Z riZ r i ≥ 1 r_i \ge 1 ri1

f ′ ( x ) = A ∑ j = 1 k ( r j ( x − a j ) − 1 ∏ i = 1 k ( x − a i ) r i ) f'(x)=A\sum_{j=1}^{k}(r_j(x-a_j)^{-1}\prod_{i=1}^{k}(x-a_i)^{r_i}) f(x)=Aj=1k(rj(xaj)1i=1k(xai)ri)

因此
f ′ ( x ) f ( x ) = A ∑ j = 1 k ( r j ( x − a j ) − 1 ∏ i = 1 k ( x − a i ) r i ) A ∏ i = 1 k ( x − a i ) r i \dfrac{f'(x)}{f(x)}=\dfrac{A\sum_{j=1}^{k}(r_j(x-a_j)^{-1}\prod_{i=1}^{k}(x-a_i)^{r_i})}{A\prod_{i=1}^{k}(x-a_i)^{r_i}} f(x)f(x)=Ai=1k(xai)riAj=1k(rj(xaj)1i=1k(xai)ri)
= ∑ j = 1 k r j x − a j =\sum_{j=1}^{k}\dfrac{r_j}{x-a_j} =j=1kxajrj
= − ∑ j = 1 k r j a j − x =-\sum_{j=1}^{k}\dfrac{r_j}{a_j-x} =j=1kajxrj
= − ∑ j = 1 k r j a j − x =-\sum_{j=1}^{k}\dfrac{r_j}{a_j-x} =j=1kajxrj
= − ∑ j = 1 k r j a j 1 1 − x a j =-\sum_{j=1}^{k}\dfrac{r_j}{a_j}\dfrac{1}{1-\frac{x}{a_j}} =j=1kajrj1ajx1
= − ∑ j = 1 k r j a j ∑ n = 0 ∞ ( x a j ) n =-\sum_{j=1}^{k}\dfrac{r_j}{a_j}\sum_{n=0}^{\infin}(\frac{x}{a_j})^n =j=1kajrjn=0(ajx)n
= − ∑ j = 1 k r j a j ∑ n = 0 ∞ x n a j n =-\sum_{j=1}^{k}\dfrac{r_j}{a_j}\sum_{n=0}^{\infin}\frac{x^n}{a_j^n} =j=1kajrjn=0ajnxn
= − ∑ n = 0 ∞ x n ∑ j = 1 k r j a j n + 1 =-\sum_{n=0}^{\infin}x^n\sum_{j=1}^{k}\dfrac{r_j}{a_j^{n+1}} =n=0xnj=1kajn+1rj

f ′ ( x ) f ( x ) = − ∑ n = 0 + ∞ c n x n \dfrac{f'(x)}{f(x)}=-\sum_{n=0}^{+\infin}c_nx^n f(x)f(x)=n=0+cnxn,由幂级数的唯一性知, c n = ∑ j = 1 k r j a j n + 1 > 0 c_n=\sum_{j=1}^{k}\dfrac{r_j}{a_j^{n+1}}>0 cn=j=1kajn+1rj>0

c n + 1 c n = ∑ j = 1 k r j a j n + 2 ∑ j = 1 k r j a j n + 1 \dfrac{c_{n+1}}{c_n}=\dfrac{\sum_{j=1}^{k}\dfrac{r_j}{a_j^{n+2}}}{\sum_{j=1}^{k}\dfrac{r_j}{a_j^{n+1}}} cncn+1=j=1kajn+1rjj=1kajn+2rj
= ∑ j = 1 k r j ( a 1 a j ) n + 2 a 1 ∑ j = 1 k r j ( a 1 a j ) n + 1 =\dfrac{\sum_{j=1}^{k}r_j(\dfrac{a_1}{a_j})^{n+2}}{a_1\sum_{j=1}^{k}r_j(\dfrac{a_1}{a_j})^{n+1}} =a1j=1krj(aja1)n+1j=1krj(aja1)n+2

lim ⁡ n → ∞ c n + 1 c n = lim ⁡ n → ∞ ∑ j = 1 k r j ( a 1 a j ) n + 2 a 1 ∑ j = 1 k r j ( a 1 a j ) n + 1 \lim_{n \rightarrow \infin}\dfrac{c_{n+1}}{c_n}=\lim_{n \rightarrow \infin}\dfrac{\sum_{j=1}^{k}r_j(\dfrac{a_1}{a_j})^{n+2}}{a_1\sum_{j=1}^{k}r_j(\dfrac{a_1}{a_j})^{n+1}} nlimcncn+1=nlima1j=1krj(aja1)n+1j=1krj(aja1)n+2
= lim ⁡ n → ∞ r 1 + ∑ j = 2 k r j ( a 1 a j ) n + 2 a 1 ( r 1 + ∑ j = 2 k r j ( a 1 a j ) n + 1 ) =\lim_{n \rightarrow \infin}\dfrac{r_1+\sum_{j=2}^{k}r_j(\dfrac{a_1}{a_j})^{n+2}}{a_1(r_1+\sum_{j=2}^{k}r_j(\dfrac{a_1}{a_j})^{n+1})} =nlima1(r1+j=2krj(aja1)n+1)r1+j=2krj(aja1)n+2
= 1 a 1 =\frac{1}{a_1} =a11


lim ⁡ n → ∞ c n n = lim ⁡ n → ∞ e ln ⁡ c n n \lim_{n \rightarrow \infin}\sqrt[n]{c_n}=\lim_{n \rightarrow \infin}e^{\frac{\ln c_n}{n}} nlimncn =nlimenlncn
= lim ⁡ n → ∞ e 1 n ( ln ⁡ c 1 + ln ⁡ c 2 c 1 + ln ⁡ c 3 c 2 + . . . + ln ⁡ c n c n − 1 ) =\lim_{n \rightarrow \infin}e^{\frac{1}{n}(\ln c_1+\ln \frac{c_2}{c_1}+\ln \frac{c_3}{c_2}+...+\ln \frac{c_n}{c_{n-1}})} =nlimen1(lnc1+lnc1c2+lnc2c3+...+lncn1cn)
= e ln ⁡ 1 a 1 =e^{\ln\frac{1}{a_1}} =elna11
= 1 a 1 =\frac{1}{a_1} =a11

其中, lim ⁡ n → ∞ 1 n ( ln ⁡ c 1 + ln ⁡ c 2 c 1 + ln ⁡ c 3 c 2 + . . . + ln ⁡ c n c n − 1 ) = lim ⁡ n → ∞ ln ⁡ c n c n − 1 = ln ⁡ 1 a 1 \lim_{n \rightarrow \infin}\frac{1}{n}(\ln c_1+\ln \frac{c_2}{c_1}+\ln \frac{c_3}{c_2}+...+\ln \frac{c_n}{c_{n-1}})=\lim_{n \rightarrow \infin}\ln \frac{c_n}{c_{n-1}}=\ln\frac{1}{a_1} limnn1(lnc1+lnc1c2+lnc2c3+...+lncn1cn)=limnlncn1cn=lna11的具体证明过程可以参考第三届全国大学生数学竞赛初赛(非数学类)第二大题第一小题.

从而有, lim ⁡ n → ∞ 1 c n n = a 1 \lim_{n \rightarrow \infin}\frac{1}{\sqrt[n]{c_n}}=a_1 limnncn 1=a1,也就是 f ( x ) f(x) f(x)的最小正根.

六、(满分14分)设 f ( x ) f(x) f(x) [ 0 , + ∞ ) [0,+\infin) [0,+)上具有连续导数,满足 3 [ 3 + f 2 ( x ) ] f ′ ( x ) = 2 [ 1 + f 2 ( x ) ] 2 e − x 2 3[3+f^2(x)]f'(x)=2[1+f^2(x)]^2e^{-x^2} 3[3+f2(x)]f(x)=2[1+f2(x)]2ex2,且 f ( 0 ) ≤ 1 f(0)\le 1 f(0)1.证明:存在常数 M > 0 M>0 M>0,使得 x ∈ [ 0 , + ∞ ) x\in [0,+\infin) x[0,+)时,恒有 ∣ f ( x ) ∣ ≤ M \left|f(x)\right|\le M f(x)M.

证明:

首先有 f ′ ( x ) = 2 [ 1 + f 2 ( x ) ] 2 e − x 2 3 [ 3 + f 2 ( x ) ] > 0 f'(x)=\dfrac{2[1+f^2(x)]^2e^{-x^2}}{3[3+f^2(x)]}>0 f(x)=3[3+f2(x)]2[1+f2(x)]2ex2>0,因此f(x)是 [ 0 , + ∞ ) [0,+\infin) [0,+)上的严格单调递增函数,故 lim ⁡ n → ∞ f ( x ) = L \lim_{n \rightarrow \infin}f(x)=L limnf(x)=L(有限或为 + ∞ +\infin +),下面证明 L ≠ + ∞ L \neq+\infin L=+.

y = f ( x ) y=f(x) y=f(x),得到如下的微分方程
d y d x = 2 ( 1 + y 2 ) 2 e − x 2 3 ( 3 + y 2 ) \frac{\mathrm{d}y}{\mathrm{d}x}=\dfrac{2(1+y^2)^2e^{-x^2}}{3(3+y^2)} dxdy=3(3+y2)2(1+y2)2ex2

这是可以分离变量的微分方程,分离变量得到
3 + y 2 ( 1 + y 2 ) 2 d y = 2 3 e − x 2 d x \dfrac{3+y^2}{(1+y^2)^2}\mathrm{d}y=\frac{2}{3}e^{-x^2}\mathrm{d}x (1+y2)23+y2dy=32ex2dx

两边积分得到
∫ 3 + y 2 ( 1 + y 2 ) 2 d y = 2 3 ∫ e − x 2 d x \int\dfrac{3+y^2}{(1+y^2)^2}\mathrm{d}y=\frac{2}{3}\int e^{-x^2}\mathrm{d}x (1+y2)23+y2dy=32ex2dx

其中
∫ 3 + y 2 ( 1 + y 2 ) 2 d y = ∫ 2 ( 1 + y 2 ) 2 + 1 1 + y 2 d y \int\dfrac{3+y^2}{(1+y^2)^2}\mathrm{d}y=\int\dfrac{2}{(1+y^2)^2}+\dfrac{1}{1+y^2}\mathrm{d}y (1+y2)23+y2dy=(1+y2)22+1+y21dy
= ∫ 2 ( 1 + y 2 ) 2 d y + ∫ 1 1 + y 2 d y =\int\dfrac{2}{(1+y^2)^2}\mathrm{d}y+\int\dfrac{1}{1+y^2}\mathrm{d}y =(1+y2)22dy+1+y21dy
= ∫ 2 ( 1 + y 2 ) 2 d y + arctan ⁡ y =\int\dfrac{2}{(1+y^2)^2}\mathrm{d}y+\arctan y =(1+y2)22dy+arctany

考虑计算 ∫ 2 ( 1 + y 2 ) 2 d y \int\dfrac{2}{(1+y^2)^2}\mathrm{d}y (1+y2)22dy,令 y = tan ⁡ t y=\tan t y=tant,则有
∫ 2 ( 1 + y 2 ) 2 d y = ∫ 2 ( 1 + tan ⁡ 2 t ) 2 sec ⁡ 2 t d t \int\dfrac{2}{(1+y^2)^2}\mathrm{d}y=\int\dfrac{2}{(1+\tan^2t)^2}\sec^2t\mathrm{d} t (1+y2)22dy=(1+tan2t)22sec2tdt
= ∫ 2 ( sec ⁡ 2 t ) 2 sec ⁡ 2 t d t =\int\dfrac{2}{(\sec^2t)^2}\sec^2t\mathrm{d} t =(sec2t)22sec2tdt
= ∫ 2 sec ⁡ 2 t d t =\int\dfrac{2}{\sec^2t}\mathrm{d} t =sec2t2dt
= ∫ 2 cos ⁡ 2 t d t =\int2\cos^2t\mathrm{d} t =2cos2tdt
= ∫ 1 + cos ⁡ ( 2 t ) d t =\int1+\cos(2t)\mathrm{d} t =1+cos(2t)dt
= t + sin ⁡ ( 2 t ) 2 + C =t+\frac{\sin(2t)}{2}+C =t+2sin(2t)+C
= t + sin ⁡ t cos ⁡ t + C =t+\sin t\cos t+C =t+sintcost+C
= arctan ⁡ y + y 1 + y 2 + C =\arctan y+\frac{y}{1+y^2}+C =arctany+1+y2y+C

因此有
∫ 3 + y 2 ( 1 + y 2 ) 2 d y = ∫ 2 ( 1 + y 2 ) 2 d y + arctan ⁡ y \int\dfrac{3+y^2}{(1+y^2)^2}\mathrm{d}y=\int\dfrac{2}{(1+y^2)^2}\mathrm{d}y+\arctan y (1+y2)23+y2dy=(1+y2)22dy+arctany
= ( arctan ⁡ y + y 1 + y 2 + C ) + arctan ⁡ y =(\arctan y+\frac{y}{1+y^2}+C)+\arctan y =(arctany+1+y2y+C)+arctany
= 2 arctan ⁡ y + y 1 + y 2 + C =2\arctan y+\frac{y}{1+y^2}+C =2arctany+1+y2y+C

代入原微分方程,有
2 arctan ⁡ y + y 1 + y 2 = 2 3 ∫ e − x 2 d x 2\arctan y+\frac{y}{1+y^2}=\frac{2}{3}\int e^{-x^2}\mathrm{d}x 2arctany+1+y2y=32ex2dx

将右边也积出来(右边的原函数不是初等函数),得到
2 arctan ⁡ y + y 1 + y 2 = 2 3 ∫ 0 x e − t 2 d t + C 2\arctan y+\frac{y}{1+y^2}=\frac{2}{3}\int_0^x e^{-t^2}\mathrm{d}t+C 2arctany+1+y2y=320xet2dt+C

代入 x = 0 x=0 x=0,得到常数 C C C的表达式
C = 2 arctan ⁡ f ( 0 ) + f ( 0 ) 1 + f 2 ( 0 ) C=2\arctan f(0)+\frac{f(0)}{1+f^2(0)} C=2arctanf(0)+1+f2(0)f(0)

L = + ∞ L = + \infin L=+,则对 2 arctan ⁡ y + y 1 + y 2 = 2 3 ∫ 0 x e − t 2 d t + C 2\arctan y+\frac{y}{1+y^2}=\frac{2}{3}\int_0^x e^{-t^2}\mathrm{d}t+C 2arctany+1+y2y=320xet2dt+C x → + ∞ x \rightarrow + \infin x+的极限,并利用 ∫ 0 + ∞ e − t 2 d t = π 2 \int_0^{+\infin}e^{-t^2}\mathrm{d}t=\frac{\sqrt{\pi}}{2} 0+et2dt=2π ,得到 C = π − π 3 C=\pi-\frac{\sqrt{\pi}}{3} C=π3π

另一方面,令 g ( u ) = 2 arctan ⁡ u + u 1 + u 2 g(u)=2\arctan u+\frac{u}{1+u^2} g(u)=2arctanu+1+u2u,则有
g ′ ( u ) = 3 + u 2 ( 1 + u 2 ) 2 > 0 g'(u)=\frac{3+u^2}{(1+u^2)^2}>0 g(u)=(1+u2)23+u2>0

所以函数 g ( u ) 在 ( − ∞ , + ∞ ) 上 严 格 单 调 递 增 g(u)在(-\infin,+\infin)上严格单调递增 g(u)(,+),又由于 f ( 0 ) ≤ 1 f(0)\le 1 f(0)1因此有

C = g ( f ( 0 ) ) ≤ g ( 1 ) = π + 1 2 C=g(f(0))\le g(1)=\frac{\pi+1}{2} C=g(f(0))g(1)=2π+1

但之前计算出 C = π − π 3 > π + 1 2 C=\pi-\frac{\sqrt{\pi}}{3}>\frac{\pi+1}{2} C=π3π >2π+1,矛盾,因此假设不成立,有 lim ⁡ n → ∞ f ( x ) = L \lim_{n \rightarrow \infin}f(x)=L limnf(x)=L L L L为有限数

最后,令 M = max ⁡ ( ∣ f ( 0 ) ∣ , ∣ L ∣ ) M=\max(\left|f(0)\right|,\left|L\right|) M=max(f(0),L),则有
∣ f ( x ) ∣ ≤ M , ∀ x ∈ [ 0 , + ∞ ) \left|f(x)\right|\le M, \forall x \in [0,+\infin) f(x)M,x[0,+)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值