【大学生数学竞赛】2019年第十一届全国大学生数学竞赛初赛非数学专业试题解答
- 试题
- 一、填空题(满分30分,共5小题,每小题6分)
- 二、(满分14分)计算三重积分 ∭ Ω x y z x 2 + y 2 d x d y d z \iiint_{\Omega}\dfrac{xyz}{x^2+y^2}\mathrm{d}x\mathrm{d}y\mathrm{d}z ∭Ωx2+y2xyzdxdydz,其中 Ω \Omega Ω是由曲面 ( x 2 + y 2 + z 2 ) 2 = 2 x y (x^2+y^2+z^2)^2=2xy (x2+y2+z2)2=2xy围成的区域在第一卦限部分.
- 三、(满分14分)设 f ( x ) f(x) f(x)在 [ 0 , + ∞ ) [0,+\infin) [0,+∞)上可微, f ( 0 ) = 0 f(0)=0 f(0)=0,且存在常数 A > 0 A>0 A>0,使得 ∣ f ′ ( x ) ∣ ≤ A ∣ f ( x ) ∣ |f'(x)|\le A|f(x)| ∣f′(x)∣≤A∣f(x)∣在 [ 0 , + ∞ ) [0,+\infin) [0,+∞)上成立,试证明在 ( 0 , + ∞ ) (0,+\infin) (0,+∞)上有 f ( x ) ≡ 0 f(x)\equiv0 f(x)≡0.
- 四、(满分14分)计算积分 I = ∫ 0 2 π d ϕ ∫ 0 π e sin θ ( cos ϕ − sin ϕ ) sin θ d θ I=\int_0^{2\pi}\mathrm{d}\phi \int_0^{\pi} e^{\sin \theta(\cos \phi - \sin \phi)}\sin \theta \mathrm{d} \theta I=∫02πdϕ∫0πesinθ(cosϕ−sinϕ)sinθdθ.
- 五、(满分14分)设 f ( x ) f(x) f(x)是仅有正实根的多项式函数,满足 f ′ ( x ) f ( x ) = − ∑ n = 0 + ∞ c n x n \dfrac{f'(x)}{f(x)}=-\sum_{n=0}^{+\infin}c_nx^n f(x)f′(x)=−∑n=0+∞cnxn,证明: c n > 0 ( n ≥ 0 ) c_n>0(n \ge 0) cn>0(n≥0),极限 lim n → + ∞ 1 c n n \lim_{n\rightarrow +\infin}\dfrac{1}{\sqrt[n]{c_n}} limn→+∞ncn1存在,且等于 f ( x ) f(x) f(x)的最小根.
- 六、(满分14分)设 f ( x ) f(x) f(x)在 [ 0 , + ∞ ) [0,+\infin) [0,+∞)上具有连续导数,满足 3 [ 3 + f 2 ( x ) ] f ′ ( x ) = 2 [ 1 + f 2 ( x ) ] 2 e − x 2 3[3+f^2(x)]f'(x)=2[1+f^2(x)]^2e^{-x^2} 3[3+f2(x)]f′(x)=2[1+f2(x)]2e−x2,且 f ( 0 ) ≤ 1 f(0)\le 1 f(0)≤1.证明:存在常数 M > 0 M>0 M>0,使得 x ∈ [ 0 , + ∞ ) x\in [0,+\infin) x∈[0,+∞)时,恒有 ∣ f ( x ) ∣ ≤ M \left|f(x)\right|\le M ∣f(x)∣≤M.
- 解答
- 一、填空题(满分30分,共5小题,每小题6分)
- 二、(满分14分)计算三重积分 ∭ Ω x y z x 2 + y 2 d x d y d z \iiint_{\Omega}\dfrac{xyz}{x^2+y^2}\mathrm{d}x\mathrm{d}y\mathrm{d}z ∭Ωx2+y2xyzdxdydz,其中 Ω \Omega Ω是由曲面 ( x 2 + y 2 + z 2 ) 2 = 2 x y (x^2+y^2+z^2)^2=2xy (x2+y2+z2)2=2xy围成的区域在第一卦限部分.
- 三、(满分14分)设 f ( x ) f(x) f(x)在 [ 0 , + ∞ ) [0,+\infin) [0,+∞)上可微, f ( 0 ) = 0 f(0)=0 f(0)=0,且存在常数 A > 0 A>0 A>0,使得 ∣ f ′ ( x ) ∣ ≤ A ∣ f ( x ) ∣ |f'(x)|\le A|f(x)| ∣f′(x)∣≤A∣f(x)∣在 [ 0 , + ∞ ) [0,+\infin) [0,+∞)上成立,试证明在 ( 0 , + ∞ ) (0,+\infin) (0,+∞)上有 f ( x ) ≡ 0 f(x)\equiv0 f(x)≡0.
- 四、(满分14分)计算积分 I = ∫ 0 2 π d ϕ ∫ 0 π e sin θ ( cos ϕ − sin ϕ ) sin θ d θ I=\int_0^{2\pi}\mathrm{d}\phi \int_0^{\pi} e^{\sin \theta(\cos \phi - \sin \phi)}\sin \theta \mathrm{d} \theta I=∫02πdϕ∫0πesinθ(cosϕ−sinϕ)sinθdθ.
- 五、(满分14分)设 f ( x ) f(x) f(x)是仅有正实根的多项式函数,满足 f ′ ( x ) f ( x ) = − ∑ n = 0 + ∞ c n x n \dfrac{f'(x)}{f(x)}=-\sum_{n=0}^{+\infin}c_nx^n f(x)f′(x)=−∑n=0+∞cnxn,证明: c n > 0 ( n ≥ 0 ) c_n>0(n \ge 0) cn>0(n≥0),极限 lim n → + ∞ 1 c n n \lim_{n\rightarrow +\infin}\dfrac{1}{\sqrt[n]{c_n}} limn→+∞ncn1存在,且等于 f ( x ) f(x) f(x)的最小根.
- 六、(满分14分)设 f ( x ) f(x) f(x)在 [ 0 , + ∞ ) [0,+\infin) [0,+∞)上具有连续导数,满足 3 [ 3 + f 2 ( x ) ] f ′ ( x ) = 2 [ 1 + f 2 ( x ) ] 2 e − x 2 3[3+f^2(x)]f'(x)=2[1+f^2(x)]^2e^{-x^2} 3[3+f2(x)]f′(x)=2[1+f2(x)]2e−x2,且 f ( 0 ) ≤ 1 f(0)\le 1 f(0)≤1.证明:存在常数 M > 0 M>0 M>0,使得 x ∈ [ 0 , + ∞ ) x\in [0,+\infin) x∈[0,+∞)时,恒有 ∣ f ( x ) ∣ ≤ M \left|f(x)\right|\le M ∣f(x)∣≤M.
试题
一、填空题(满分30分,共5小题,每小题6分)
(1) 计算极限
lim x → 0 ln ( e sin x + 1 − cos x 3 ) − sin x a r c t a n ( 4 1 − cos x 3 ) = _ _ _ _ _ _ . \lim_{x \rightarrow0}\dfrac{\ln(e^{\sin x}+\sqrt[3]{1-\cos x})-\sin x}{arctan(4\sqrt[3]{1-\cos x})}= \_\_\_\_\_\_. x→0limarctan(431−cosx)ln(esinx+31−cosx)−sinx=______.
(2) 根据隐函数求不定积分
设隐函数 y = y ( x ) y=y(x) y=y(x)由方程 y 2 ( x − y ) = x 2 y^2(x-y)=x^2 y2(x−y)=x2所确定,则 ∫ d x y 2 = _ _ _ _ _ _ . \int{\dfrac{\mathrm{d} x}{y^2}}=\_\_\_\_\_\_. ∫y2dx=______.
(3) 求定积分
定积分 ∫ 0 π 2 e x ( 1 + sin x ) 1 + cos x d x = _ _ _ _ _ _ . \int_{0}^{\frac{\pi}{2}}\dfrac{e^x(1+\sin x)}{1+\cos x}\mathrm{d} x=\_\_\_\_\_\_. ∫02π1+cosxex(1+sinx)dx=______.
(4) 求二元函数原函数
已知 d u ( x , y ) = y d x − x d y 3 x 2 − 2 x y + 3 y 2 \mathrm{d} u(x,y)=\dfrac{y\mathrm{d}x-x\mathrm{d}y}{3x^2-2xy+3y^2} du(x,y)=3x2−2xy+3y2ydx−xdy,则 u ( x , y ) = _ _ _ _ _ _ . u(x,y)=\_\_\_\_\_\_. u(x,y)=______.
(5) 求空间曲面参数值
设
a
,
b
,
c
,
μ
>
0
a,b,c,\mu > 0
a,b,c,μ>0, 曲面
x
y
z
=
μ
xyz=\mu
xyz=μ与曲面
x
2
a
2
+
y
2
b
2
+
z
2
c
2
=
1
\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1
a2x2+b2y2+c2z2=1
相切,则
μ
=
_
_
_
_
_
_
.
\mu=\_\_\_\_\_\_.
μ=______.
二、(满分14分)计算三重积分 ∭ Ω x y z x 2 + y 2 d x d y d z \iiint_{\Omega}\dfrac{xyz}{x^2+y^2}\mathrm{d}x\mathrm{d}y\mathrm{d}z ∭Ωx2+y2xyzdxdydz,其中 Ω \Omega Ω是由曲面 ( x 2 + y 2 + z 2 ) 2 = 2 x y (x^2+y^2+z^2)^2=2xy (x2+y2+z2)2=2xy围成的区域在第一卦限部分.
三、(满分14分)设 f ( x ) f(x) f(x)在 [ 0 , + ∞ ) [0,+\infin) [0,+∞)上可微, f ( 0 ) = 0 f(0)=0 f(0)=0,且存在常数 A > 0 A>0 A>0,使得 ∣ f ′ ( x ) ∣ ≤ A ∣ f ( x ) ∣ |f'(x)|\le A|f(x)| ∣f′(x)∣≤A∣f(x)∣在 [ 0 , + ∞ ) [0,+\infin) [0,+∞)上成立,试证明在 ( 0 , + ∞ ) (0,+\infin) (0,+∞)上有 f ( x ) ≡ 0 f(x)\equiv0 f(x)≡0.
四、(满分14分)计算积分 I = ∫ 0 2 π d ϕ ∫ 0 π e sin θ ( cos ϕ − sin ϕ ) sin θ d θ I=\int_0^{2\pi}\mathrm{d}\phi \int_0^{\pi} e^{\sin \theta(\cos \phi - \sin \phi)}\sin \theta \mathrm{d} \theta I=∫02πdϕ∫0πesinθ(cosϕ−sinϕ)sinθdθ.
五、(满分14分)设 f ( x ) f(x) f(x)是仅有正实根的多项式函数,满足 f ′ ( x ) f ( x ) = − ∑ n = 0 + ∞ c n x n \dfrac{f'(x)}{f(x)}=-\sum_{n=0}^{+\infin}c_nx^n f(x)f′(x)=−∑n=0+∞cnxn,证明: c n > 0 ( n ≥ 0 ) c_n>0(n \ge 0) cn>0(n≥0),极限 lim n → + ∞ 1 c n n \lim_{n\rightarrow +\infin}\dfrac{1}{\sqrt[n]{c_n}} limn→+∞ncn1存在,且等于 f ( x ) f(x) f(x)的最小根.
六、(满分14分)设 f ( x ) f(x) f(x)在 [ 0 , + ∞ ) [0,+\infin) [0,+∞)上具有连续导数,满足 3 [ 3 + f 2 ( x ) ] f ′ ( x ) = 2 [ 1 + f 2 ( x ) ] 2 e − x 2 3[3+f^2(x)]f'(x)=2[1+f^2(x)]^2e^{-x^2} 3[3+f2(x)]f′(x)=2[1+f2(x)]2e−x2,且 f ( 0 ) ≤ 1 f(0)\le 1 f(0)≤1.证明:存在常数 M > 0 M>0 M>0,使得 x ∈ [ 0 , + ∞ ) x\in [0,+\infin) x∈[0,+∞)时,恒有 ∣ f ( x ) ∣ ≤ M \left|f(x)\right|\le M ∣f(x)∣≤M.
解答
一、填空题(满分30分,共5小题,每小题6分)
(1)计算极限
lim x → 0 ln ( e sin x + 1 − cos x 3 ) − sin x a r c t a n ( 4 1 − cos x 3 ) = _ _ _ _ _ _ . \lim_{x \rightarrow0}\dfrac{\ln(e^{\sin x}+\sqrt[3]{1-\cos x})-\sin x}{arctan(4\sqrt[3]{1-\cos x})}= \_\_\_\_\_\_. x→0limarctan(431−cosx)ln(esinx+31−cosx)−sinx=______.
解:
lim
x
→
0
ln
(
e
sin
x
+
1
−
cos
x
3
)
−
sin
x
a
r
c
t
a
n
(
4
1
−
cos
x
3
)
\lim_{x \rightarrow0}\dfrac{\ln(e^{\sin x}+\sqrt[3]{1-\cos x})-\sin x}{arctan(4\sqrt[3]{1-\cos x})}
x→0limarctan(431−cosx)ln(esinx+31−cosx)−sinx
=
lim
x
→
0
ln
(
e
sin
x
+
1
−
cos
x
3
)
a
r
c
t
a
n
(
4
1
−
cos
x
3
)
−
lim
x
→
0
sin
x
a
r
c
t
a
n
(
4
1
−
cos
x
3
)
=\lim_{x \rightarrow0}\dfrac{\ln(e^{\sin x}+\sqrt[3]{1-\cos x})}{arctan(4\sqrt[3]{1-\cos x})}-\lim_{x \rightarrow0}\dfrac{\sin x}{arctan(4\sqrt[3]{1-\cos x})}
=x→0limarctan(431−cosx)ln(esinx+31−cosx)−x→0limarctan(431−cosx)sinx
若上面等式右边的两个极限分别存在,则等号成立.
可以使用
x
→
0
x \rightarrow0
x→0时的等价无穷小代换求解上面等式右边的两个极限.
lim
x
→
0
ln
(
e
sin
x
+
1
−
cos
x
3
)
a
r
c
t
a
n
(
4
1
−
cos
x
3
)
\lim_{x \rightarrow0}\dfrac{\ln(e^{\sin x}+\sqrt[3]{1-\cos x})}{arctan(4\sqrt[3]{1-\cos x})}
x→0limarctan(431−cosx)ln(esinx+31−cosx)
=
lim
x
→
0
e
sin
x
+
1
−
cos
x
3
−
1
4
1
−
cos
x
3
=\lim_{x \rightarrow0}\dfrac{e^{\sin x}+\sqrt[3]{1-\cos x}-1}{4\sqrt[3]{1-\cos x}}
=x→0lim431−cosxesinx+31−cosx−1
=
lim
x
→
0
e
sin
x
−
1
4
1
−
cos
x
3
+
lim
x
→
0
1
−
cos
x
3
4
1
−
cos
x
3
=\lim_{x \rightarrow0}\dfrac{e^{\sin x}-1}{4\sqrt[3]{1-\cos x}}+\lim_{x \rightarrow0}\dfrac{\sqrt[3]{1-\cos x}}{4\sqrt[3]{1-\cos x}}
=x→0lim431−cosxesinx−1+x→0lim431−cosx31−cosx
若上面等式右边的两个极限分别存在,则等号成立.
显然,
lim
x
→
0
1
−
cos
x
3
4
1
−
cos
x
3
=
1
4
\lim_{x \rightarrow0}\dfrac{\sqrt[3]{1-\cos x}}{4\sqrt[3]{1-\cos x}}=\dfrac{1}{4}
limx→0431−cosx31−cosx=41
而
lim
x
→
0
e
sin
x
−
1
4
1
−
cos
x
3
=
lim
x
→
0
sin
x
4
1
2
x
2
3
=
lim
x
→
0
x
4
1
2
x
2
3
=
0
\lim_{x \rightarrow0}\dfrac{e^{\sin x}-1}{4\sqrt[3]{1-\cos x}}=\lim_{x \rightarrow0}\dfrac{\sin x}{4\sqrt[3]{\frac{1}{2}x^2}}=\lim_{x \rightarrow0}\dfrac{x}{4\sqrt[3]{\frac{1}{2}x^2}}=0
limx→0431−cosxesinx−1=limx→04321x2sinx=limx→04321x2x=0
因此
lim
x
→
0
e
sin
x
+
1
−
cos
x
3
−
1
4
1
−
cos
x
3
=
lim
x
→
0
e
sin
x
−
1
4
1
−
cos
x
3
+
lim
x
→
0
1
−
cos
x
3
4
1
−
cos
x
3
\lim_{x \rightarrow0}\dfrac{e^{\sin x}+\sqrt[3]{1-\cos x}-1}{4\sqrt[3]{1-\cos x}}=\lim_{x \rightarrow0}\dfrac{e^{\sin x}-1}{4\sqrt[3]{1-\cos x}}+\lim_{x \rightarrow0}\dfrac{\sqrt[3]{1-\cos x}}{4\sqrt[3]{1-\cos x}}
x→0lim431−cosxesinx+31−cosx−1=x→0lim431−cosxesinx−1+x→0lim431−cosx31−cosx
=
0
+
1
4
=
1
4
=0+\dfrac{1}{4}=\dfrac{1}{4}
=0+41=41
而 lim x → 0 sin x a r c t a n ( 4 1 − cos x 3 ) = lim x → 0 x 4 1 − cos x 3 = lim x → 0 x 4 1 2 x 2 3 = 0 \lim_{x \rightarrow0}\dfrac{\sin x}{arctan(4\sqrt[3]{1-\cos x})}=\lim_{x \rightarrow0}\dfrac{x}{4\sqrt[3]{1-\cos x}}=\lim_{x \rightarrow0}\dfrac{x}{4\sqrt[3]{\frac{1}{2}x^2}}=0 limx→0arctan(431−cosx)sinx=limx→0431−cosxx=limx→04321x2x=0
因此
lim
x
→
0
ln
(
e
sin
x
+
1
−
cos
x
3
)
−
sin
x
a
r
c
t
a
n
(
4
1
−
cos
x
3
)
=
lim
x
→
0
ln
(
e
sin
x
+
1
−
cos
x
3
)
a
r
c
t
a
n
(
4
1
−
cos
x
3
)
−
lim
x
→
0
sin
x
a
r
c
t
a
n
(
4
1
−
cos
x
3
)
\lim_{x \rightarrow0}\dfrac{\ln(e^{\sin x}+\sqrt[3]{1-\cos x})-\sin x}{arctan(4\sqrt[3]{1-\cos x})}=\lim_{x \rightarrow0}\dfrac{\ln(e^{\sin x}+\sqrt[3]{1-\cos x})}{arctan(4\sqrt[3]{1-\cos x})}-\lim_{x \rightarrow0}\dfrac{\sin x}{arctan(4\sqrt[3]{1-\cos x})}
x→0limarctan(431−cosx)ln(esinx+31−cosx)−sinx=x→0limarctan(431−cosx)ln(esinx+31−cosx)−x→0limarctan(431−cosx)sinx
=
1
4
−
0
=
1
4
=\dfrac{1}{4}-0=\dfrac{1}{4}
=41−0=41
(2)根据隐函数求不定积分
设隐函数 y = y ( x ) y=y(x) y=y(x)由方程 y 2 ( x − y ) = x 2 y^2(x-y)=x^2 y2(x−y)=x2所确定,则 ∫ d x y 2 = _ _ _ _ _ _ . \int{\dfrac{\mathrm{d} x}{y^2}}=\_\_\_\_\_\_. ∫y2dx=______.
思路:
对一个隐函数的含y表达式求积分或导数后,结果表达式中可能会同时含有x和y。
解决这类问题,通常需要对x和y做一个变换(如将y用x和中间变量t表示),然后将函数从隐函数形式变为参数方程的形式。这样x和y都可以用另一个中间变量t表示,然后就可以将所求积分的被积表达式进行代换,得到只含有t的被积表达式形式,之后运用一元函数积分学的知识求出积分,最后将t使用x和y回代即可得到最终的积分结果(t也可以被x和y表示)。
最后注意,不定积分千万不要忘记加C。
解:
令
y
=
t
x
y=tx
y=tx,代入隐函数表达式,则有:
t
2
x
2
(
x
−
t
x
)
=
x
2
t^2x^2(x-tx)=x^2
t2x2(x−tx)=x2
化简得到:
x
=
1
t
2
(
1
−
t
)
x=\dfrac{1}{t^2(1-t)}
x=t2(1−t)1
因此,有:
y
=
t
x
=
1
t
(
1
−
t
)
y=tx=\dfrac{1}{t(1-t)}
y=tx=t(1−t)1
将x和y代入被积表达式,得到:
∫
d
x
y
2
\int{\dfrac{\mathrm{d} x}{y^2}}
∫y2dx
=
∫
d
(
1
t
2
(
1
−
t
)
)
1
t
2
(
1
−
t
)
2
d
t
=\int \dfrac{\mathrm{d}( \dfrac{1}{t^2(1-t)})}{\dfrac{1}{t^2(1-t)^2}} \mathrm{d}t
=∫t2(1−t)21d(t2(1−t)1)dt
=
∫
−
2
t
−
3
(
1
−
t
)
−
1
+
t
−
2
(
1
−
t
)
−
2
1
t
2
(
1
−
t
)
2
d
t
=\int \dfrac{-2t^{-3}(1-t)^{-1}+t^{-2}(1-t)^{-2}}{\dfrac{1}{t^2(1-t)^2}} \mathrm{d}t
=∫t2(1−t)21−2t−3(1−t)−1+t−2(1−t)−2dt
=
∫
(
−
2
t
−
1
(
1
−
t
)
+
1
)
d
t
=\int (-2t^{-1}(1-t)+1) \mathrm{d}t
=∫(−2t−1(1−t)+1)dt
=
∫
(
3
−
2
t
)
d
t
=\int (3-\dfrac{2}{t}) \mathrm{d}t
=∫(3−t2)dt
=
3
t
−
2
ln
∣
t
∣
+
C
=3t-2\ln \left | t \right | + C
=3t−2ln∣t∣+C
由于
y
=
t
x
y=tx
y=tx,因此代入上式得到:
∫
d
x
y
2
=
3
t
−
2
ln
∣
t
∣
+
C
\int{\dfrac{\mathrm{d} x}{y^2}}=3t-2\ln \left | t \right | + C
∫y2dx=3t−2ln∣t∣+C
=
3
y
x
−
2
ln
∣
y
x
∣
+
C
=3\dfrac{y}{x}-2\ln \left | \dfrac{y}{x} \right | + C
=3xy−2ln∣∣∣xy∣∣∣+C
(3) 求定积分
定积分 ∫ 0 π 2 e x ( 1 + sin x ) 1 + cos x d x = _ _ _ _ _ _ . \int_{0}^{\frac{\pi}{2}}\dfrac{e^x(1+\sin x)}{1+\cos x}\mathrm{d} x=\_\_\_\_\_\_. ∫02π1+cosxex(1+sinx)dx=______.
解:
∫
0
π
2
e
x
(
1
+
sin
x
)
1
+
cos
x
d
x
\int_{0}^{\frac{\pi}{2}}\dfrac{e^x(1+\sin x)}{1+\cos x}\mathrm{d} x
∫02π1+cosxex(1+sinx)dx
=
∫
0
π
2
e
x
1
+
cos
x
d
x
+
∫
0
π
2
e
x
sin
x
1
+
cos
x
d
x
= \int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\int_{0}^{\frac{\pi}{2}}\dfrac{e^x\sin x}{1+\cos x}\mathrm{d} x
=∫02π1+cosxexdx+∫02π1+cosxexsinxdx
=
∫
0
π
2
e
x
1
+
cos
x
d
x
+
∫
0
π
2
sin
x
1
+
cos
x
d
e
x
= \int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\int_{0}^{\frac{\pi}{2}}\dfrac{\sin x}{1+\cos x}\mathrm{d} e^x
=∫02π1+cosxexdx+∫02π1+cosxsinxdex
=
∫
0
π
2
e
x
1
+
cos
x
d
x
+
e
x
sin
x
1
+
cos
x
∣
0
π
2
−
∫
0
π
2
e
x
d
sin
x
1
+
cos
x
= \int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\dfrac{e^x\sin x}{1+\cos x}\Big|^{\frac{\pi}{2}}_{0}-\int_{0}^{\frac{\pi}{2}}e^x\mathrm{d} \dfrac{\sin x}{1+\cos x}
=∫02π1+cosxexdx+1+cosxexsinx∣∣∣02π−∫02πexd1+cosxsinx
=
∫
0
π
2
e
x
1
+
cos
x
d
x
+
e
x
sin
x
1
+
cos
x
∣
0
π
2
−
∫
0
π
2
e
x
cos
x
(
1
+
cos
x
)
−
sin
x
(
−
sin
x
)
(
1
+
cos
x
)
2
d
x
=\int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\dfrac{e^x\sin x}{1+\cos x}\Big|^{\frac{\pi}{2}}_{0}-\int_{0}^{\frac{\pi}{2}}e^x \dfrac{\cos x(1+\cos x)-\sin x(-\sin x)}{(1+\cos x)^2}\mathrm{d}x
=∫02π1+cosxexdx+1+cosxexsinx∣∣∣02π−∫02πex(1+cosx)2cosx(1+cosx)−sinx(−sinx)dx
=
∫
0
π
2
e
x
1
+
cos
x
d
x
+
e
x
sin
x
1
+
cos
x
∣
0
π
2
−
∫
0
π
2
e
x
cos
x
+
cos
2
x
+
sin
2
x
(
1
+
cos
x
)
2
d
x
=\int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\dfrac{e^x\sin x}{1+\cos x}\Big|^{\frac{\pi}{2}}_{0}-\int_{0}^{\frac{\pi}{2}}e^x \dfrac{\cos x+\cos^2 x+\sin^2 x}{(1+\cos x)^2}\mathrm{d}x
=∫02π1+cosxexdx+1+cosxexsinx∣∣∣02π−∫02πex(1+cosx)2cosx+cos2x+sin2xdx
=
∫
0
π
2
e
x
1
+
cos
x
d
x
+
e
x
sin
x
1
+
cos
x
∣
0
π
2
−
∫
0
π
2
e
x
cos
x
+
(
cos
2
x
+
sin
2
x
)
(
1
+
cos
x
)
2
d
x
=\int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\dfrac{e^x\sin x}{1+\cos x}\Big|^{\frac{\pi}{2}}_{0}-\int_{0}^{\frac{\pi}{2}}e^x \dfrac{\cos x+(\cos^2 x+\sin^2 x)}{(1+\cos x)^2}\mathrm{d}x
=∫02π1+cosxexdx+1+cosxexsinx∣∣∣02π−∫02πex(1+cosx)2cosx+(cos2x+sin2x)dx
=
∫
0
π
2
e
x
1
+
cos
x
d
x
+
e
x
sin
x
1
+
cos
x
∣
0
π
2
−
∫
0
π
2
e
x
cos
x
+
1
(
1
+
cos
x
)
2
d
x
=\int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\dfrac{e^x\sin x}{1+\cos x}\Big|^{\frac{\pi}{2}}_{0}-\int_{0}^{\frac{\pi}{2}}e^x \dfrac{\cos x+1}{(1+\cos x)^2}\mathrm{d}x
=∫02π1+cosxexdx+1+cosxexsinx∣∣∣02π−∫02πex(1+cosx)2cosx+1dx
=
∫
0
π
2
e
x
1
+
cos
x
d
x
+
e
x
sin
x
1
+
cos
x
∣
0
π
2
−
∫
0
π
2
e
x
1
+
cos
x
d
x
=\int_{0}^{\frac{\pi}{2}}\dfrac{e^x}{1+\cos x}\mathrm{d} x+\dfrac{e^x\sin x}{1+\cos x}\Big|^{\frac{\pi}{2}}_{0}-\int_{0}^{\frac{\pi}{2}} \dfrac{e^x}{1+\cos x}\mathrm{d}x
=∫02π1+cosxexdx+1+cosxexsinx∣∣∣02π−∫02π1+cosxexdx
=
e
x
sin
x
1
+
cos
x
∣
0
π
2
=\dfrac{e^x\sin x}{1+\cos x}\Big|^{\frac{\pi}{2}}_{0}
=1+cosxexsinx∣∣∣02π
=
e
π
2
=e^{\frac{\pi}{2}}
=e2π
(4) 求二元函数原函数
已知 d u ( x , y ) = y d x − x d y 3 x 2 − 2 x y + 3 y 2 \mathrm{d} u(x,y)=\dfrac{y\mathrm{d}x-x\mathrm{d}y}{3x^2-2xy+3y^2} du(x,y)=3x2−2xy+3y2ydx−xdy,则 u ( x , y ) = _ _ _ _ _ _ . u(x,y)=\_\_\_\_\_\_. u(x,y)=______.
解:
d
u
(
x
,
y
)
=
y
d
x
−
x
d
y
3
x
2
−
2
x
y
+
3
y
2
\mathrm{d} u(x,y)=\dfrac{y\mathrm{d}x-x\mathrm{d}y}{3x^2-2xy+3y^2}
du(x,y)=3x2−2xy+3y2ydx−xdy
=
1
y
d
x
−
x
y
2
d
y
3
(
x
y
)
2
−
2
x
y
+
3
=\dfrac{\dfrac{1}{y}\mathrm{d}x-\dfrac{x}{y^2}\mathrm{d}y}{3(\dfrac{x}{y})^2-2\dfrac{x}{y}+3}
=3(yx)2−2yx+3y1dx−y2xdy
=
d
(
x
y
)
3
(
x
y
)
2
−
2
x
y
+
3
=\dfrac{\mathrm{d}(\dfrac{x}{y})}{3(\dfrac{x}{y})^2-2\dfrac{x}{y}+3}
=3(yx)2−2yx+3d(yx)
=
d
(
x
y
−
1
3
)
3
(
x
y
−
1
3
)
2
+
8
3
=\dfrac{\mathrm{d}(\dfrac{x}{y}-\dfrac{1}{3})}{3(\dfrac{x}{y}-\dfrac{1}{3})^2+\dfrac{8}{3}}
=3(yx−31)2+38d(yx−31)
=
1
2
2
d
(
3
x
2
2
y
−
1
2
2
)
(
3
x
2
2
y
−
1
2
2
)
2
+
1
=\dfrac{1}{2\sqrt{2}}\dfrac{\mathrm{d}(\frac{3x}{2\sqrt{2}y}-\frac{1}{2\sqrt{2}})}{(\frac{3x}{2\sqrt{2}y}-\frac{1}{2\sqrt{2}})^2+1}
=221(22y3x−221)2+1d(22y3x−221)
=
1
2
2
arctan
(
3
x
2
2
y
−
1
2
2
)
+
C
=\dfrac{1}{2\sqrt{2}}\arctan(\frac{3x}{2\sqrt{2}y}-\frac{1}{2\sqrt{2}})+C
=221arctan(22y3x−221)+C
(5) 求空间曲面参数值
设
a
,
b
,
c
,
μ
>
0
a,b,c,\mu > 0
a,b,c,μ>0, 曲面
x
y
z
=
μ
xyz=\mu
xyz=μ与曲面
x
2
a
2
+
y
2
b
2
+
z
2
c
2
=
1
\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1
a2x2+b2y2+c2z2=1
相切,则
μ
=
_
_
_
_
_
_
.
\mu=\_\_\_\_\_\_.
μ=______.
解:
曲面 x y z = μ xyz=\mu xyz=μ上任一点 P P P切平面的法向量为: ( y z , x z , x y ) ∣ P (yz,xz,xy)|_P (yz,xz,xy)∣P
曲面 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1上任一点 P P P切平面的法向量为: ( 2 x a 2 , 2 y b 2 , 2 z c 2 ) ∣ P (\frac{2x}{a^2},\frac{2y}{b^2},\frac{2z}{c^2})|_P (a22x,b22y,c22z)∣P
不妨设两曲面的切点为 Q ( x 0 , y 0 , z 0 ) Q(x_0,y_0,z_0) Q(x0,y0,z0),则有在Q点处,曲面 x y z = μ xyz=\mu xyz=μ和曲面 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1的法平面的切向量平行,也就是:
y 0 z 0 = λ 2 x 0 a 2 , x 0 z 0 = λ 2 y 0 b 2 , x 0 y 0 = λ 2 z 0 c 2 y_0z_0=\lambda\dfrac{2x_0}{a^2},x_0z_0=\lambda\dfrac{2y_0}{b^2},x_0y_0=\lambda\dfrac{2z_0}{c^2} y0z0=λa22x0,x0z0=λb22y0,x0y0=λc22z0
又因为Q在曲面 x y z = μ xyz=\mu xyz=μ上,因此有 x 0 y 0 z 0 = μ x_0y_0z_0=\mu x0y0z0=μ
将 x 0 y 0 z 0 = μ x_0y_0z_0=\mu x0y0z0=μ代入 y 0 z 0 = λ 2 x 0 a 2 , x 0 z 0 = λ 2 y 0 b 2 , x 0 y 0 = λ 2 z 0 c 2 y_0z_0=\lambda\dfrac{2x_0}{a^2},x_0z_0=\lambda\dfrac{2y_0}{b^2},x_0y_0=\lambda\dfrac{2z_0}{c^2} y0z0=λa22x0,x0z0=λb22y0,x0y0=λc22z0,得到:
μ x 0 = λ 2 x 0 a 2 , μ y 0 = λ 2 y 0 b 2 , μ z 0 = λ 2 z 0 c 2 \dfrac{\mu}{x_0}=\lambda\dfrac{2x_0}{a^2},\dfrac{\mu}{y_0}=\lambda\dfrac{2y_0}{b^2},\dfrac{\mu}{z_0}=\lambda\dfrac{2z_0}{c^2} x0μ=λa22x0,y0μ=λb22y0,z0μ=λc22z0
也就是:
μ
=
λ
2
x
0
2
a
2
,
μ
=
λ
2
y
0
2
b
2
,
μ
=
λ
2
z
0
2
c
2
\mu=\lambda\dfrac{2x_0^2}{a^2},\mu=\lambda\dfrac{2y_0^2}{b^2},\mu=\lambda\dfrac{2z_0^2}{c^2}
μ=λa22x02,μ=λb22y02,μ=λc22z02
将上面三个式子相乘,得到:
μ
3
=
λ
3
8
x
0
2
y
0
2
z
0
2
a
2
b
2
c
2
\mu^3=\lambda^3\dfrac{8x_0^2y_0^2z_0^2}{a^2b^2c^2}
μ3=λ3a2b2c28x02y02z02
由于
x
0
y
0
z
0
=
μ
x_0y_0z_0=\mu
x0y0z0=μ,因此代入上式有:
μ
=
λ
3
8
a
2
b
2
c
2
\mu=\lambda^3\dfrac{8}{a^2b^2c^2}
μ=λ3a2b2c28
又因为Q在曲面 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1上,因此有 x 0 2 a 2 + y 0 2 b 2 + z 0 2 c 2 = 1 \frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}+\frac{z_0^2}{c^2}=1 a2x02+b2y02+c2z02=1
所以将之前
μ
=
λ
2
x
0
2
a
2
,
μ
=
λ
2
y
0
2
b
2
,
μ
=
λ
2
z
0
2
c
2
\mu=\lambda\dfrac{2x_0^2}{a^2},\mu=\lambda\dfrac{2y_0^2}{b^2},\mu=\lambda\dfrac{2z_0^2}{c^2}
μ=λa22x02,μ=λb22y02,μ=λc22z02三个式子相加,得到:
3
μ
=
2
λ
(
x
0
2
a
2
+
y
0
2
b
2
+
z
0
2
c
2
)
=
2
λ
3\mu=2\lambda(\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}+\frac{z_0^2}{c^2})=2\lambda
3μ=2λ(a2x02+b2y02+c2z02)=2λ
因此有
μ
=
(
3
μ
2
)
3
8
a
2
b
2
c
2
\mu=(\dfrac{3\mu}{2})^3\dfrac{8}{a^2b^2c^2}
μ=(23μ)3a2b2c28
也就是
μ
=
27
μ
3
8
8
a
2
b
2
c
2
=
27
μ
3
a
2
b
2
c
2
\mu=\dfrac{27\mu^3}{8}\dfrac{8}{a^2b^2c^2}=\dfrac{27\mu^3}{a^2b^2c^2}
μ=827μ3a2b2c28=a2b2c227μ3
因为
a
,
b
,
c
,
μ
>
0
a,b,c,\mu > 0
a,b,c,μ>0, 因此
μ
=
a
b
c
3
3
\mu=\dfrac{abc}{3\sqrt{3}}
μ=33abc
二、(满分14分)计算三重积分 ∭ Ω x y z x 2 + y 2 d x d y d z \iiint_{\Omega}\dfrac{xyz}{x^2+y^2}\mathrm{d}x\mathrm{d}y\mathrm{d}z ∭Ωx2+y2xyzdxdydz,其中 Ω \Omega Ω是由曲面 ( x 2 + y 2 + z 2 ) 2 = 2 x y (x^2+y^2+z^2)^2=2xy (x2+y2+z2)2=2xy围成的区域在第一卦限部分.
本题主要考察三重积分的概念与计算。
解:
对该三重积分进行球坐标变换,令 x = ρ sin φ cos θ , y = ρ sin φ sin θ , z = ρ cos φ x=\rho \sin \varphi \cos \theta, y=\rho \sin \varphi \sin \theta, z=\rho \cos \varphi x=ρsinφcosθ,y=ρsinφsinθ,z=ρcosφ.由于要计算在第一卦限范围内的三重积分,因此 φ ∈ [ 0 , π 2 ] , θ ∈ [ 0 , π 2 ] \varphi \in [0,\frac{\pi}{2}],\theta \in[0,\frac{\pi}{2}] φ∈[0,2π],θ∈[0,2π],则曲面方程 ( x 2 + y 2 + z 2 ) 2 = 2 x y (x^2+y^2+z^2)^2=2xy (x2+y2+z2)2=2xy在球坐标变换后变为 ρ 2 = 2 sin 2 φ sin θ cos θ \rho^2=2\sin^2\varphi\sin\theta\cos\theta ρ2=2sin2φsinθcosθ,因此如果先枚举 φ \varphi φ和 θ \theta θ,则 ρ ∈ [ 0 , 2 sin 2 φ sin θ cos θ ] \rho \in[0,\sqrt{2\sin^2\varphi\sin\theta\cos\theta}] ρ∈[0,2sin2φsinθcosθ],因此得到:
∭
Ω
x
y
z
x
2
+
y
2
d
x
d
y
d
z
\iiint_{\Omega}\dfrac{xyz}{x^2+y^2}\mathrm{d}x\mathrm{d}y\mathrm{d}z
∭Ωx2+y2xyzdxdydz
=
∫
0
π
2
sin
φ
d
φ
∫
0
π
2
d
θ
∫
0
2
sin
2
φ
sin
θ
cos
θ
ρ
2
d
ρ
ρ
3
sin
2
φ
cos
φ
sin
θ
cos
θ
ρ
2
sin
2
φ
=\int_{0}^{\frac{\pi}{2}}\sin\varphi\mathrm{d}\varphi\int_0^{\frac{\pi}{2}}\mathrm{d}\theta\int_{0}^{\sqrt{2\sin^2\varphi\sin\theta\cos\theta}}\rho^2\mathrm{d}\rho\dfrac{\rho^3\sin^2\varphi\cos\varphi\sin\theta\cos\theta}{\rho^2\sin^2\varphi}
=∫02πsinφdφ∫02πdθ∫02sin2φsinθcosθρ2dρρ2sin2φρ3sin2φcosφsinθcosθ
=
∫
0
π
2
sin
φ
d
φ
∫
0
π
2
d
θ
∫
0
2
sin
2
φ
sin
θ
cos
θ
ρ
3
cos
φ
sin
θ
cos
θ
d
ρ
=\int_{0}^{\frac{\pi}{2}}\sin\varphi\mathrm{d}\varphi\int_0^{\frac{\pi}{2}}\mathrm{d}\theta\int_{0}^{\sqrt{2\sin^2\varphi\sin\theta\cos\theta}}\rho^3\cos\varphi\sin\theta\cos\theta\mathrm{d}\rho
=∫02πsinφdφ∫02πdθ∫02sin2φsinθcosθρ3cosφsinθcosθdρ
=
∫
0
π
2
sin
φ
cos
φ
d
φ
∫
0
π
2
sin
θ
cos
θ
d
θ
∫
0
2
sin
2
φ
sin
θ
cos
θ
ρ
3
d
ρ
=\int_{0}^{\frac{\pi}{2}}\sin\varphi\cos\varphi\mathrm{d}\varphi\int_0^{\frac{\pi}{2}}\sin\theta\cos\theta\mathrm{d}\theta\int_{0}^{\sqrt{2\sin^2\varphi\sin\theta\cos\theta}}\rho^3\mathrm{d}\rho
=∫02πsinφcosφdφ∫02πsinθcosθdθ∫02sin2φsinθcosθρ3dρ
=
∫
0
π
2
sin
φ
cos
φ
d
φ
∫
0
π
2
sin
θ
cos
θ
d
θ
(
1
4
ρ
4
)
∣
0
2
sin
2
φ
sin
θ
cos
θ
=\int_{0}^{\frac{\pi}{2}}\sin\varphi\cos\varphi\mathrm{d}\varphi\int_0^{\frac{\pi}{2}}\sin\theta\cos\theta\mathrm{d}\theta(\frac{1}{4}\rho^4)\big|_{0}^{\sqrt{2\sin^2\varphi\sin\theta\cos\theta}}
=∫02πsinφcosφdφ∫02πsinθcosθdθ(41ρ4)∣∣02sin2φsinθcosθ
=
∫
0
π
2
sin
φ
cos
φ
d
φ
∫
0
π
2
sin
θ
cos
θ
d
θ
sin
4
φ
sin
2
θ
cos
2
θ
=\int_{0}^{\frac{\pi}{2}}\sin\varphi\cos\varphi\mathrm{d}\varphi\int_0^{\frac{\pi}{2}}\sin\theta\cos\theta\mathrm{d}\theta\sin^4\varphi\sin^2\theta\cos^2\theta
=∫02πsinφcosφdφ∫02πsinθcosθdθsin4φsin2θcos2θ
=
∫
0
π
2
sin
5
φ
cos
φ
d
φ
∫
0
π
2
sin
3
θ
cos
3
θ
d
θ
=\int_{0}^{\frac{\pi}{2}}\sin^5\varphi\cos\varphi\mathrm{d}\varphi\int_0^{\frac{\pi}{2}}\sin^3\theta\cos^3\theta\mathrm{d}\theta
=∫02πsin5φcosφdφ∫02πsin3θcos3θdθ
=
∫
0
π
2
sin
5
φ
d
(
sin
φ
)
∫
0
π
2
sin
3
θ
cos
3
θ
d
θ
=\int_{0}^{\frac{\pi}{2}}\sin^5\varphi\mathrm{d}(\sin\varphi)\int_0^{\frac{\pi}{2}}\sin^3\theta\cos^3\theta\mathrm{d}\theta
=∫02πsin5φd(sinφ)∫02πsin3θcos3θdθ
=
1
6
(
sin
6
φ
)
∣
0
π
2
∫
0
π
2
sin
3
θ
cos
3
θ
d
θ
=\frac{1}{6}(\sin^6\varphi)\big|_{0}^{\frac{\pi}{2}}\int_0^{\frac{\pi}{2}}\sin^3\theta\cos^3\theta\mathrm{d}\theta
=61(sin6φ)∣∣02π∫02πsin3θcos3θdθ
=
1
6
∫
0
π
2
sin
3
θ
cos
2
θ
d
(
sin
θ
)
=\frac{1}{6}\int_0^{\frac{\pi}{2}}\sin^3\theta\cos^2\theta\mathrm{d}(\sin\theta)
=61∫02πsin3θcos2θd(sinθ)
=
1
6
∫
0
π
2
sin
3
θ
(
1
−
sin
2
θ
)
d
(
sin
θ
)
=\frac{1}{6}\int_0^{\frac{\pi}{2}}\sin^3\theta(1-\sin^2\theta)\mathrm{d}(\sin\theta)
=61∫02πsin3θ(1−sin2θ)d(sinθ)
=
1
6
∫
0
π
2
sin
3
θ
−
sin
5
θ
d
(
sin
θ
)
=\frac{1}{6}\int_0^{\frac{\pi}{2}}\sin^3\theta-\sin^5\theta\mathrm{d}(\sin\theta)
=61∫02πsin3θ−sin5θd(sinθ)
=
1
6
(
1
4
sin
4
θ
−
1
6
sin
6
θ
)
∣
0
π
2
=\frac{1}{6}(\frac{1}{4}\sin^4\theta-\frac{1}{6}\sin^6\theta)\big|_0^{\frac{\pi}{2}}
=61(41sin4θ−61sin6θ)∣∣02π
=
1
6
(
1
4
−
1
6
)
=\frac{1}{6}(\frac{1}{4}-\frac{1}{6})
=61(41−61)
=
1
72
=\frac{1}{72}
=721
三、(满分14分)设 f ( x ) f(x) f(x)在 [ 0 , + ∞ ) [0,+\infin) [0,+∞)上可微, f ( 0 ) = 0 f(0)=0 f(0)=0,且存在常数 A > 0 A>0 A>0,使得 ∣ f ′ ( x ) ∣ ≤ A ∣ f ( x ) ∣ |f'(x)|\le A|f(x)| ∣f′(x)∣≤A∣f(x)∣在 [ 0 , + ∞ ) [0,+\infin) [0,+∞)上成立,试证明在 ( 0 , + ∞ ) (0,+\infin) (0,+∞)上有 f ( x ) ≡ 0 f(x)\equiv0 f(x)≡0.
本题主要考察微分中值定理。
证明函数恒等于0,可以证明函数在某个区间内的最大值等于0。证明函数在某个区间的最大值等于0,可以通过证明函数在某个区间内最大值的绝对值小于等于该绝对值乘以一个小于1的比例系数。
证明函数在区间 [ 0 , + ∞ ) [0,+\infin) [0,+∞)上满足某个性质,也可以将区间 [ 0 , + ∞ ) [0,+\infin) [0,+∞)分为若干段,分别证明或递推证明在这若干段区间上都满足性质。
证明:
设 x 0 ∈ [ 0 , 1 2 A ] , 使 得 ∣ f ( x 0 ) ∣ = max { ∣ f ( x ) ∣ ∣ x ∈ [ 0 , 1 2 A ] } x_0 \in [0,\frac{1}{2A}],使得|f(x_0)|=\max \left \{ |f(x)| \big| x \in [0,\frac{1}{2A}]\right\} x0∈[0,2A1],使得∣f(x0)∣=max{∣f(x)∣∣∣x∈[0,2A1]}
因为 f ( x ) f(x) f(x)在 [ 0 , 1 2 A ] [0,\frac{1}{2A}] [0,2A1]可微,因此 f ( x ) f(x) f(x)在 [ 0 , 1 2 A ] [0,\frac{1}{2A}] [0,2A1]内连续.
因为 f ( x ) f(x) f(x)在 ( 0 , 1 2 A ) (0,\frac{1}{2A}) (0,2A1)可微,因此 f ( x ) f(x) f(x)在 ( 0 , 1 2 A ) (0,\frac{1}{2A}) (0,2A1)内也可导.
由于 f ( x ) f(x) f(x)在 [ 0 , 1 2 A ] [0,\frac{1}{2A}] [0,2A1]内连续,在 ( 0 , 1 2 A ) (0,\frac{1}{2A}) (0,2A1)内可导,因此根据拉格朗日中值定理, ∃ ξ ∈ ( 0 , 1 2 A ) \exists \xi \in (0,\frac{1}{2A}) ∃ξ∈(0,2A1),使得:
f ( x 0 ) − f ( 0 ) = f ′ ( ξ ) ( x 0 − 0 ) f(x_0)-f(0)=f'(\xi)(x_0-0) f(x0)−f(0)=f′(ξ)(x0−0)
因为 f ( 0 ) = 0 f(0)=0 f(0)=0,因此有
f ( x 0 ) = f ′ ( ξ ) x 0 f(x_0)=f'(\xi)x_0 f(x0)=f′(ξ)x0
因此
∣ f ( x 0 ) ∣ = ∣ f ′ ( ξ ) x 0 ∣ = ∣ f ′ ( ξ ) ∣ x 0 ≤ A ∣ f ( ξ ) ∣ x 0 ≤ A ∣ f ( x 0 ) ∣ x 0 ≤ A ∣ f ( x 0 ) ∣ 1 2 A = 1 2 ∣ f ( x 0 ) ∣ |f(x_0)|=|f'(\xi)x_0|=|f'(\xi)|x_0\le A|f(\xi)|x_0 \le A|f(x_0)|x_0\le A|f(x_0)|\frac{1}{2A}=\frac{1}{2}|f(x_0)| ∣f(x0)∣=∣f′(ξ)x0∣=∣f′(ξ)∣x0≤A∣f(ξ)∣x0≤A∣f(x0)∣x0≤A∣f(x0)∣2A1=21∣f(x0)∣
也就是 ∣ f ( x 0 ) ∣ ≤ 1 2 ∣ f ( x 0 ) ∣ |f(x_0)| \le \frac{1}{2}|f(x_0)| ∣f(x0)∣≤21∣f(x0)∣
所以 1 2 ∣ f ( x 0 ) ∣ ≤ 0 \frac{1}{2}|f(x_0)| \le 0 21∣f(x0)∣≤0
又因为 ∣ f ( x 0 ) ∣ ≥ 0 |f(x_0)| \ge 0 ∣f(x0)∣≥0
因此 ∣ f ( x 0 ) ∣ = 0 |f(x_0)| = 0 ∣f(x0)∣=0
因此 ∀ x ∈ [ 0 , 1 2 A ] , f ( x ) ≡ 0 \forall x \in [0,\frac{1}{2A}], f(x) \equiv 0 ∀x∈[0,2A1],f(x)≡0
递推可得,对于所有的 x ∈ [ k 2 A , k + 1 2 A ] , k = 0 , 1 , 2...... x \in [\frac{k}{2A},\frac{k+1}{2A}],k=0,1,2...... x∈[2Ak,2Ak+1],k=0,1,2......,都有 f ( x ) ≡ 0 f(x) \equiv 0 f(x)≡0
因此在 ( 0 , + ∞ ) (0,+\infin) (0,+∞)上有 f ( x ) ≡ 0 f(x)\equiv0 f(x)≡0
四、(满分14分)计算积分 I = ∫ 0 2 π d ϕ ∫ 0 π e sin θ ( cos ϕ − sin ϕ ) sin θ d θ I=\int_0^{2\pi}\mathrm{d}\phi \int_0^{\pi} e^{\sin \theta(\cos \phi - \sin \phi)}\sin \theta \mathrm{d} \theta I=∫02πdϕ∫0πesinθ(cosϕ−sinϕ)sinθdθ.
设球面
Σ
:
x
2
+
y
2
+
z
2
=
1
\Sigma:x^2+y^2+z^2=1
Σ:x2+y2+z2=1,由球面的参数方程
x
=
sin
θ
cos
ϕ
,
y
=
sin
θ
sin
ϕ
,
z
=
cos
θ
x=\sin\theta\cos\phi,y=\sin\theta\sin\phi,z=\cos\theta
x=sinθcosϕ,y=sinθsinϕ,z=cosθ
知
E
=
x
θ
2
+
y
θ
2
+
z
θ
2
=
(
cos
θ
cos
ϕ
)
2
+
(
cos
θ
sin
ϕ
)
2
+
(
−
sin
θ
)
2
=
cos
2
θ
cos
2
ϕ
+
cos
2
θ
sin
2
ϕ
+
sin
2
θ
=
cos
2
θ
(
cos
2
ϕ
+
sin
2
ϕ
)
+
sin
2
θ
=
cos
2
θ
+
sin
2
θ
=
1
E=x_{\theta}^2+y_{\theta}^2+z_{\theta}^2=(\cos\theta\cos\phi)^2+(\cos\theta\sin\phi)^2+(-\sin\theta)^2=\cos^2\theta\cos^2\phi+\cos^2\theta\sin^2\phi+\sin^2\theta=\cos^2\theta(\cos^2\phi+\sin^2\phi)+\sin^2\theta=\cos^2\theta+\sin^2\theta=1
E=xθ2+yθ2+zθ2=(cosθcosϕ)2+(cosθsinϕ)2+(−sinθ)2=cos2θcos2ϕ+cos2θsin2ϕ+sin2θ=cos2θ(cos2ϕ+sin2ϕ)+sin2θ=cos2θ+sin2θ=1
F
=
x
θ
x
ϕ
+
y
θ
y
ϕ
+
z
θ
z
ϕ
=
(
cos
θ
cos
ϕ
)
(
−
sin
θ
sin
ϕ
)
+
(
cos
θ
sin
ϕ
)
(
sin
θ
cos
ϕ
)
+
(
−
sin
θ
)
⋅
0
=
−
sin
θ
cos
θ
sin
ϕ
cos
ϕ
+
sin
θ
cos
θ
sin
ϕ
cos
ϕ
=
0
F=x_{\theta}x_{\phi}+y_{\theta}y_{\phi}+z_{\theta}z_{\phi}=(\cos\theta\cos\phi)(-\sin\theta\sin\phi)+(\cos\theta\sin\phi)(\sin\theta\cos\phi)+(-\sin\theta)\cdot0=-\sin\theta\cos\theta\sin\phi\cos\phi+\sin\theta\cos\theta\sin\phi\cos\phi=0
F=xθxϕ+yθyϕ+zθzϕ=(cosθcosϕ)(−sinθsinϕ)+(cosθsinϕ)(sinθcosϕ)+(−sinθ)⋅0=−sinθcosθsinϕcosϕ+sinθcosθsinϕcosϕ=0
G
=
x
ϕ
2
+
y
ϕ
2
+
z
ϕ
2
=
(
−
sin
θ
sin
ϕ
)
2
+
(
sin
θ
cos
ϕ
)
2
+
0
2
=
sin
2
θ
sin
2
ϕ
+
sin
2
θ
cos
2
ϕ
=
sin
2
θ
(
sin
2
ϕ
+
cos
2
ϕ
)
=
sin
2
θ
G=x_{\phi}^2+y_{\phi}^2+z_{\phi}^2=(-\sin\theta\sin\phi)^2+(\sin\theta\cos\phi)^2+0^2=\sin^2\theta\sin^2\phi+\sin^2\theta\cos^2\phi=\sin^2\theta(\sin^2\phi+\cos^2\phi)=\sin^2\theta
G=xϕ2+yϕ2+zϕ2=(−sinθsinϕ)2+(sinθcosϕ)2+02=sin2θsin2ϕ+sin2θcos2ϕ=sin2θ(sin2ϕ+cos2ϕ)=sin2θ
因此 d S = E G − F 2 d θ d ϕ = sin 2 θ d θ d ϕ = ∣ sin θ ∣ d θ d ϕ dS=\sqrt{EG-F^2}\mathrm{d}\theta\mathrm{d}\phi=\sqrt{\sin^2\theta}\mathrm{d}\theta\mathrm{d}\phi=\left|\sin\theta\right|\mathrm{d}\theta\mathrm{d}\phi dS=EG−F2dθdϕ=sin2θdθdϕ=∣sinθ∣dθdϕ
由于上面的球坐标变换中, θ ∈ [ 0 , π ] \theta \in [0,\pi] θ∈[0,π],因此 sin θ ≥ 0 \sin\theta\ge 0 sinθ≥0,于是 d S = sin θ d θ d ϕ dS=\sin\theta\mathrm{d}\theta\mathrm{d}\phi dS=sinθdθdϕ
I
=
∫
0
2
π
d
ϕ
∫
0
π
e
sin
θ
(
cos
ϕ
−
sin
ϕ
)
sin
θ
d
θ
I=\int_0^{2\pi}\mathrm{d}\phi \int_0^{\pi} e^{\sin \theta(\cos \phi - \sin \phi)}\sin \theta \mathrm{d} \theta
I=∫02πdϕ∫0πesinθ(cosϕ−sinϕ)sinθdθ
=
∬
Σ
e
x
−
y
d
S
=\iint_{\Sigma}e^{x-y}\mathrm{d}S
=∬Σex−ydS
之后有两种处理方法.
解法一:坐标变换法
做坐标变换
x
=
u
+
v
2
,
y
=
u
−
v
2
,
z
=
w
x=\frac{u+v}{\sqrt{2}},y=\frac{u-v}{\sqrt{2}},z=w
x=2u+v,y=2u−v,z=w
则
Σ
:
x
2
+
y
2
+
z
2
=
1
\Sigma:x^2+y^2+z^2=1
Σ:x2+y2+z2=1变换为
Σ
′
:
u
2
+
v
2
+
w
2
=
1
\Sigma':u^2+v^2+w^2=1
Σ′:u2+v2+w2=1
∬ Σ e x − y d S = ∬ Σ ′ e 2 u ∣ J ∣ d S \iint_{\Sigma}e^{x-y}\mathrm{d}S=\iint_{\Sigma'}e^{\sqrt{2}u}\left|J\right|\mathrm{d}S ∬Σex−ydS=∬Σ′e2u∣J∣dS
其中,
J
=
D
(
x
,
y
,
z
)
D
(
u
,
v
,
w
)
=
∣
x
u
x
v
x
w
y
u
y
v
y
w
z
u
z
v
z
w
∣
=
∣
1
2
1
2
0
1
2
−
1
2
0
0
0
1
∣
=
−
1
J=\dfrac{\mathrm{D}(x,y,z)}{\mathrm{D}(u,v,w)}=\begin{vmatrix} x_u& x_v & x_w\\ y_u & y_v & y_w \\ z_u & z_v & z_w \end{vmatrix}=\begin{vmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{vmatrix}=-1
J=D(u,v,w)D(x,y,z)=∣∣∣∣∣∣xuyuzuxvyvzvxwywzw∣∣∣∣∣∣=∣∣∣∣∣∣21210212−10001∣∣∣∣∣∣=−1
因此
∬
Σ
′
e
2
u
∣
J
∣
d
S
=
∬
Σ
′
e
2
u
d
S
\iint_{\Sigma'}e^{\sqrt{2}u}\left|J\right|\mathrm{d}S=\iint_{\Sigma'}e^{\sqrt{2}u}\mathrm{d}S
∬Σ′e2u∣J∣dS=∬Σ′e2udS
因为 Σ ′ : u 2 + v 2 + w 2 = 1 \Sigma':u^2+v^2+w^2=1 Σ′:u2+v2+w2=1关于 u , v , w u,v,w u,v,w具有轮换对称性,因此有 ∬ Σ ′ e 2 u d S = ∬ Σ ′ e 2 w d S \iint_{\Sigma'}e^{\sqrt{2}u}\mathrm{d}S=\iint_{\Sigma'}e^{\sqrt{2}w}\mathrm{d}S ∬Σ′e2udS=∬Σ′e2wdS
再做球坐标变换
u
=
sin
θ
cos
ϕ
,
v
=
sin
θ
sin
ϕ
,
w
=
cos
θ
u=\sin\theta\cos\phi,v=\sin\theta\sin\phi,w=\cos\theta
u=sinθcosϕ,v=sinθsinϕ,w=cosθ,因此有
∬
Σ
′
e
2
w
d
S
=
∫
0
2
π
d
ϕ
∫
0
π
e
2
cos
θ
sin
θ
d
θ
\iint_{\Sigma'}e^{\sqrt{2}w}\mathrm{d}S=\int_0^{2\pi}\mathrm{d}\phi\int_0^{\pi}e^{\sqrt{2}\cos\theta}\sin\theta\mathrm{d}\theta
∬Σ′e2wdS=∫02πdϕ∫0πe2cosθsinθdθ
=
−
1
2
∫
0
2
π
d
ϕ
∫
0
π
e
2
cos
θ
d
(
2
cos
θ
)
=\frac{-1}{\sqrt{2}}\int_0^{2\pi}\mathrm{d}\phi\int_0^{\pi}e^{\sqrt{2}\cos\theta}\mathrm{d}(\sqrt{2}\cos\theta)
=2−1∫02πdϕ∫0πe2cosθd(2cosθ)
=
−
1
2
∫
0
2
π
d
ϕ
∫
0
π
d
(
e
2
cos
θ
)
=\frac{-1}{\sqrt{2}}\int_0^{2\pi}\mathrm{d}\phi\int_0^{\pi}\mathrm{d}(e^{\sqrt{2}\cos\theta})
=2−1∫02πdϕ∫0πd(e2cosθ)
=
−
1
2
∫
0
2
π
d
ϕ
(
e
2
cos
θ
)
∣
0
π
=\frac{-1}{\sqrt{2}}\int_0^{2\pi}\mathrm{d}\phi(e^{\sqrt{2}\cos\theta})\big|_0^{\pi}
=2−1∫02πdϕ(e2cosθ)∣∣0π
=
−
1
2
∫
0
2
π
d
ϕ
(
e
−
2
−
e
2
)
=\frac{-1}{\sqrt{2}}\int_0^{2\pi}\mathrm{d}\phi(e^{-\sqrt{2}}-e^{\sqrt{2}})
=2−1∫02πdϕ(e−2−e2)
=
−
1
2
(
2
π
)
(
e
−
2
−
e
2
)
=\frac{-1}{\sqrt{2}}(2\pi)(e^{-\sqrt{2}}-e^{\sqrt{2}})
=2−1(2π)(e−2−e2)
=
2
π
(
e
2
−
e
−
2
)
=\sqrt{2}\pi(e^{\sqrt{2}}-e^{-\sqrt{2}})
=2π(e2−e−2)
解法二:微元法
设平面 P t : x − y 2 = t , − 1 ≤ t ≤ 1 P_t:\frac{x-y}{\sqrt{2}}=t,-1\le t \le1 Pt:2x−y=t,−1≤t≤1,其中t为平面 P t P_t Pt被球面截下部分中心到原点距离.用平面 P t P_t Pt分割球面 Σ \Sigma Σ,球面在平面 P t , P t + d t P_t,P_{t+\mathrm{d}t} Pt,Pt+dt之间的部分形如圆台外表面状,记为 Σ t , t + d t \Sigma_{t,t+\mathrm{d}t} Σt,t+dt,被积函数在该微元上为 e x − y = e 2 t e^{x-y}=e^{\sqrt{2}t} ex−y=e2t.
由于
Σ
t
,
t
+
d
t
\Sigma_{t,t+\mathrm{d}t}
Σt,t+dt的半径为
r
t
=
1
−
t
2
r_t=\sqrt{1-t^2}
rt=1−t2,半径的增长率为:
d
(
1
−
t
2
)
=
−
t
1
−
t
2
d
t
\mathrm{d}(\sqrt{1-t^2})=\frac{-t}{\sqrt{1-t^2}}\mathrm{d}t
d(1−t2)=1−t2−tdt
也就是 Σ t , t + d t \Sigma_{t,t+\mathrm{d}t} Σt,t+dt上下底面半径之差.
记圆台外表面斜高为 h t h_t ht,则由微元法及勾股定理,得 ( d t ) 2 + ( d 1 − t 2 ) 2 = h t 2 (\mathrm{d}t)^2+(\mathrm{d}\sqrt{1-t^2})^2=h_t^2 (dt)2+(d1−t2)2=ht2,化简得到 h t = d t 1 − t 2 h_t=\dfrac{\mathrm{d}t}{\sqrt{1-t^2}} ht=1−t2dt
因此 Σ t , t + d t \Sigma_{t,t+\mathrm{d}t} Σt,t+dt的面积为 d S = 2 π r t h t = 2 π 1 − t 2 d t 1 − t 2 = 2 π d t \mathrm{d}S=2\pi r_th_t=2\pi \sqrt{1-t^2}\dfrac{\mathrm{d}t}{\sqrt{1-t^2}}=2\pi\mathrm{d}t dS=2πrtht=2π1−t21−t2dt=2πdt
因此有
I
=
∬
Σ
e
x
−
y
d
S
=
∫
−
1
1
e
2
t
2
π
d
t
I=\iint_{\Sigma}e^{x-y}\mathrm{d}S=\int_{-1}^{1}e^{\sqrt{2}t}2\pi\mathrm{d}t
I=∬Σex−ydS=∫−11e2t2πdt
=
2
π
∫
−
1
1
e
2
t
d
(
2
t
)
=\sqrt{2}\pi\int_{-1}^{1}e^{\sqrt{2}t}\mathrm{d}(\sqrt{2}t)
=2π∫−11e2td(2t)
=
2
π
∫
−
1
1
d
(
e
2
t
)
=\sqrt{2}\pi\int_{-1}^{1}\mathrm{d}(e^{\sqrt{2}t})
=2π∫−11d(e2t)
=
2
π
(
e
2
t
)
∣
−
1
1
=\sqrt{2}\pi (e^{\sqrt{2}t})\big|_{-1}^{1}
=2π(e2t)∣∣−11
=
2
π
(
e
2
−
e
−
2
)
=\sqrt{2}\pi(e^{\sqrt{2}}-e^{-\sqrt{2}})
=2π(e2−e−2)
五、(满分14分)设 f ( x ) f(x) f(x)是仅有正实根的多项式函数,满足 f ′ ( x ) f ( x ) = − ∑ n = 0 + ∞ c n x n \dfrac{f'(x)}{f(x)}=-\sum_{n=0}^{+\infin}c_nx^n f(x)f′(x)=−∑n=0+∞cnxn,证明: c n > 0 ( n ≥ 0 ) c_n>0(n \ge 0) cn>0(n≥0),极限 lim n → + ∞ 1 c n n \lim_{n\rightarrow +\infin}\dfrac{1}{\sqrt[n]{c_n}} limn→+∞ncn1存在,且等于 f ( x ) f(x) f(x)的最小根.
证明:由于
f
(
x
)
f(x)
f(x)为仅有正实根的多项式函数,不妨设
f
(
x
)
f(x)
f(x)的全部根的取值为
0
<
a
1
<
a
2
<
.
.
.
<
a
k
0<a_1<a_2<...<a_k
0<a1<a2<...<ak,这样有
f
(
x
)
=
A
∏
i
=
1
k
(
x
−
a
i
)
r
i
f(x)=A\prod_{i=1}^{k}(x-a_i)^{r_i}
f(x)=Ai=1∏k(x−ai)ri
其中
r
i
r_i
ri为对应根
a
i
a_i
ai的重数,满足
r
i
∈
Z
r_i \in Z
ri∈Z且
r
i
≥
1
r_i \ge 1
ri≥1
f ′ ( x ) = A ∑ j = 1 k ( r j ( x − a j ) − 1 ∏ i = 1 k ( x − a i ) r i ) f'(x)=A\sum_{j=1}^{k}(r_j(x-a_j)^{-1}\prod_{i=1}^{k}(x-a_i)^{r_i}) f′(x)=Aj=1∑k(rj(x−aj)−1i=1∏k(x−ai)ri)
因此
f
′
(
x
)
f
(
x
)
=
A
∑
j
=
1
k
(
r
j
(
x
−
a
j
)
−
1
∏
i
=
1
k
(
x
−
a
i
)
r
i
)
A
∏
i
=
1
k
(
x
−
a
i
)
r
i
\dfrac{f'(x)}{f(x)}=\dfrac{A\sum_{j=1}^{k}(r_j(x-a_j)^{-1}\prod_{i=1}^{k}(x-a_i)^{r_i})}{A\prod_{i=1}^{k}(x-a_i)^{r_i}}
f(x)f′(x)=A∏i=1k(x−ai)riA∑j=1k(rj(x−aj)−1∏i=1k(x−ai)ri)
=
∑
j
=
1
k
r
j
x
−
a
j
=\sum_{j=1}^{k}\dfrac{r_j}{x-a_j}
=j=1∑kx−ajrj
=
−
∑
j
=
1
k
r
j
a
j
−
x
=-\sum_{j=1}^{k}\dfrac{r_j}{a_j-x}
=−j=1∑kaj−xrj
=
−
∑
j
=
1
k
r
j
a
j
−
x
=-\sum_{j=1}^{k}\dfrac{r_j}{a_j-x}
=−j=1∑kaj−xrj
=
−
∑
j
=
1
k
r
j
a
j
1
1
−
x
a
j
=-\sum_{j=1}^{k}\dfrac{r_j}{a_j}\dfrac{1}{1-\frac{x}{a_j}}
=−j=1∑kajrj1−ajx1
=
−
∑
j
=
1
k
r
j
a
j
∑
n
=
0
∞
(
x
a
j
)
n
=-\sum_{j=1}^{k}\dfrac{r_j}{a_j}\sum_{n=0}^{\infin}(\frac{x}{a_j})^n
=−j=1∑kajrjn=0∑∞(ajx)n
=
−
∑
j
=
1
k
r
j
a
j
∑
n
=
0
∞
x
n
a
j
n
=-\sum_{j=1}^{k}\dfrac{r_j}{a_j}\sum_{n=0}^{\infin}\frac{x^n}{a_j^n}
=−j=1∑kajrjn=0∑∞ajnxn
=
−
∑
n
=
0
∞
x
n
∑
j
=
1
k
r
j
a
j
n
+
1
=-\sum_{n=0}^{\infin}x^n\sum_{j=1}^{k}\dfrac{r_j}{a_j^{n+1}}
=−n=0∑∞xnj=1∑kajn+1rj
而 f ′ ( x ) f ( x ) = − ∑ n = 0 + ∞ c n x n \dfrac{f'(x)}{f(x)}=-\sum_{n=0}^{+\infin}c_nx^n f(x)f′(x)=−∑n=0+∞cnxn,由幂级数的唯一性知, c n = ∑ j = 1 k r j a j n + 1 > 0 c_n=\sum_{j=1}^{k}\dfrac{r_j}{a_j^{n+1}}>0 cn=∑j=1kajn+1rj>0
c
n
+
1
c
n
=
∑
j
=
1
k
r
j
a
j
n
+
2
∑
j
=
1
k
r
j
a
j
n
+
1
\dfrac{c_{n+1}}{c_n}=\dfrac{\sum_{j=1}^{k}\dfrac{r_j}{a_j^{n+2}}}{\sum_{j=1}^{k}\dfrac{r_j}{a_j^{n+1}}}
cncn+1=∑j=1kajn+1rj∑j=1kajn+2rj
=
∑
j
=
1
k
r
j
(
a
1
a
j
)
n
+
2
a
1
∑
j
=
1
k
r
j
(
a
1
a
j
)
n
+
1
=\dfrac{\sum_{j=1}^{k}r_j(\dfrac{a_1}{a_j})^{n+2}}{a_1\sum_{j=1}^{k}r_j(\dfrac{a_1}{a_j})^{n+1}}
=a1∑j=1krj(aja1)n+1∑j=1krj(aja1)n+2
lim
n
→
∞
c
n
+
1
c
n
=
lim
n
→
∞
∑
j
=
1
k
r
j
(
a
1
a
j
)
n
+
2
a
1
∑
j
=
1
k
r
j
(
a
1
a
j
)
n
+
1
\lim_{n \rightarrow \infin}\dfrac{c_{n+1}}{c_n}=\lim_{n \rightarrow \infin}\dfrac{\sum_{j=1}^{k}r_j(\dfrac{a_1}{a_j})^{n+2}}{a_1\sum_{j=1}^{k}r_j(\dfrac{a_1}{a_j})^{n+1}}
n→∞limcncn+1=n→∞lima1∑j=1krj(aja1)n+1∑j=1krj(aja1)n+2
=
lim
n
→
∞
r
1
+
∑
j
=
2
k
r
j
(
a
1
a
j
)
n
+
2
a
1
(
r
1
+
∑
j
=
2
k
r
j
(
a
1
a
j
)
n
+
1
)
=\lim_{n \rightarrow \infin}\dfrac{r_1+\sum_{j=2}^{k}r_j(\dfrac{a_1}{a_j})^{n+2}}{a_1(r_1+\sum_{j=2}^{k}r_j(\dfrac{a_1}{a_j})^{n+1})}
=n→∞lima1(r1+∑j=2krj(aja1)n+1)r1+∑j=2krj(aja1)n+2
=
1
a
1
=\frac{1}{a_1}
=a11
而
lim
n
→
∞
c
n
n
=
lim
n
→
∞
e
ln
c
n
n
\lim_{n \rightarrow \infin}\sqrt[n]{c_n}=\lim_{n \rightarrow \infin}e^{\frac{\ln c_n}{n}}
n→∞limncn=n→∞limenlncn
=
lim
n
→
∞
e
1
n
(
ln
c
1
+
ln
c
2
c
1
+
ln
c
3
c
2
+
.
.
.
+
ln
c
n
c
n
−
1
)
=\lim_{n \rightarrow \infin}e^{\frac{1}{n}(\ln c_1+\ln \frac{c_2}{c_1}+\ln \frac{c_3}{c_2}+...+\ln \frac{c_n}{c_{n-1}})}
=n→∞limen1(lnc1+lnc1c2+lnc2c3+...+lncn−1cn)
=
e
ln
1
a
1
=e^{\ln\frac{1}{a_1}}
=elna11
=
1
a
1
=\frac{1}{a_1}
=a11
其中, lim n → ∞ 1 n ( ln c 1 + ln c 2 c 1 + ln c 3 c 2 + . . . + ln c n c n − 1 ) = lim n → ∞ ln c n c n − 1 = ln 1 a 1 \lim_{n \rightarrow \infin}\frac{1}{n}(\ln c_1+\ln \frac{c_2}{c_1}+\ln \frac{c_3}{c_2}+...+\ln \frac{c_n}{c_{n-1}})=\lim_{n \rightarrow \infin}\ln \frac{c_n}{c_{n-1}}=\ln\frac{1}{a_1} limn→∞n1(lnc1+lnc1c2+lnc2c3+...+lncn−1cn)=limn→∞lncn−1cn=lna11的具体证明过程可以参考第三届全国大学生数学竞赛初赛(非数学类)第二大题第一小题.
从而有, lim n → ∞ 1 c n n = a 1 \lim_{n \rightarrow \infin}\frac{1}{\sqrt[n]{c_n}}=a_1 limn→∞ncn1=a1,也就是 f ( x ) f(x) f(x)的最小正根.
六、(满分14分)设 f ( x ) f(x) f(x)在 [ 0 , + ∞ ) [0,+\infin) [0,+∞)上具有连续导数,满足 3 [ 3 + f 2 ( x ) ] f ′ ( x ) = 2 [ 1 + f 2 ( x ) ] 2 e − x 2 3[3+f^2(x)]f'(x)=2[1+f^2(x)]^2e^{-x^2} 3[3+f2(x)]f′(x)=2[1+f2(x)]2e−x2,且 f ( 0 ) ≤ 1 f(0)\le 1 f(0)≤1.证明:存在常数 M > 0 M>0 M>0,使得 x ∈ [ 0 , + ∞ ) x\in [0,+\infin) x∈[0,+∞)时,恒有 ∣ f ( x ) ∣ ≤ M \left|f(x)\right|\le M ∣f(x)∣≤M.
证明:
首先有 f ′ ( x ) = 2 [ 1 + f 2 ( x ) ] 2 e − x 2 3 [ 3 + f 2 ( x ) ] > 0 f'(x)=\dfrac{2[1+f^2(x)]^2e^{-x^2}}{3[3+f^2(x)]}>0 f′(x)=3[3+f2(x)]2[1+f2(x)]2e−x2>0,因此f(x)是 [ 0 , + ∞ ) [0,+\infin) [0,+∞)上的严格单调递增函数,故 lim n → ∞ f ( x ) = L \lim_{n \rightarrow \infin}f(x)=L limn→∞f(x)=L(有限或为 + ∞ +\infin +∞),下面证明 L ≠ + ∞ L \neq+\infin L=+∞.
记
y
=
f
(
x
)
y=f(x)
y=f(x),得到如下的微分方程
d
y
d
x
=
2
(
1
+
y
2
)
2
e
−
x
2
3
(
3
+
y
2
)
\frac{\mathrm{d}y}{\mathrm{d}x}=\dfrac{2(1+y^2)^2e^{-x^2}}{3(3+y^2)}
dxdy=3(3+y2)2(1+y2)2e−x2
这是可以分离变量的微分方程,分离变量得到
3
+
y
2
(
1
+
y
2
)
2
d
y
=
2
3
e
−
x
2
d
x
\dfrac{3+y^2}{(1+y^2)^2}\mathrm{d}y=\frac{2}{3}e^{-x^2}\mathrm{d}x
(1+y2)23+y2dy=32e−x2dx
两边积分得到
∫
3
+
y
2
(
1
+
y
2
)
2
d
y
=
2
3
∫
e
−
x
2
d
x
\int\dfrac{3+y^2}{(1+y^2)^2}\mathrm{d}y=\frac{2}{3}\int e^{-x^2}\mathrm{d}x
∫(1+y2)23+y2dy=32∫e−x2dx
其中
∫
3
+
y
2
(
1
+
y
2
)
2
d
y
=
∫
2
(
1
+
y
2
)
2
+
1
1
+
y
2
d
y
\int\dfrac{3+y^2}{(1+y^2)^2}\mathrm{d}y=\int\dfrac{2}{(1+y^2)^2}+\dfrac{1}{1+y^2}\mathrm{d}y
∫(1+y2)23+y2dy=∫(1+y2)22+1+y21dy
=
∫
2
(
1
+
y
2
)
2
d
y
+
∫
1
1
+
y
2
d
y
=\int\dfrac{2}{(1+y^2)^2}\mathrm{d}y+\int\dfrac{1}{1+y^2}\mathrm{d}y
=∫(1+y2)22dy+∫1+y21dy
=
∫
2
(
1
+
y
2
)
2
d
y
+
arctan
y
=\int\dfrac{2}{(1+y^2)^2}\mathrm{d}y+\arctan y
=∫(1+y2)22dy+arctany
考虑计算
∫
2
(
1
+
y
2
)
2
d
y
\int\dfrac{2}{(1+y^2)^2}\mathrm{d}y
∫(1+y2)22dy,令
y
=
tan
t
y=\tan t
y=tant,则有
∫
2
(
1
+
y
2
)
2
d
y
=
∫
2
(
1
+
tan
2
t
)
2
sec
2
t
d
t
\int\dfrac{2}{(1+y^2)^2}\mathrm{d}y=\int\dfrac{2}{(1+\tan^2t)^2}\sec^2t\mathrm{d} t
∫(1+y2)22dy=∫(1+tan2t)22sec2tdt
=
∫
2
(
sec
2
t
)
2
sec
2
t
d
t
=\int\dfrac{2}{(\sec^2t)^2}\sec^2t\mathrm{d} t
=∫(sec2t)22sec2tdt
=
∫
2
sec
2
t
d
t
=\int\dfrac{2}{\sec^2t}\mathrm{d} t
=∫sec2t2dt
=
∫
2
cos
2
t
d
t
=\int2\cos^2t\mathrm{d} t
=∫2cos2tdt
=
∫
1
+
cos
(
2
t
)
d
t
=\int1+\cos(2t)\mathrm{d} t
=∫1+cos(2t)dt
=
t
+
sin
(
2
t
)
2
+
C
=t+\frac{\sin(2t)}{2}+C
=t+2sin(2t)+C
=
t
+
sin
t
cos
t
+
C
=t+\sin t\cos t+C
=t+sintcost+C
=
arctan
y
+
y
1
+
y
2
+
C
=\arctan y+\frac{y}{1+y^2}+C
=arctany+1+y2y+C
因此有
∫
3
+
y
2
(
1
+
y
2
)
2
d
y
=
∫
2
(
1
+
y
2
)
2
d
y
+
arctan
y
\int\dfrac{3+y^2}{(1+y^2)^2}\mathrm{d}y=\int\dfrac{2}{(1+y^2)^2}\mathrm{d}y+\arctan y
∫(1+y2)23+y2dy=∫(1+y2)22dy+arctany
=
(
arctan
y
+
y
1
+
y
2
+
C
)
+
arctan
y
=(\arctan y+\frac{y}{1+y^2}+C)+\arctan y
=(arctany+1+y2y+C)+arctany
=
2
arctan
y
+
y
1
+
y
2
+
C
=2\arctan y+\frac{y}{1+y^2}+C
=2arctany+1+y2y+C
代入原微分方程,有
2
arctan
y
+
y
1
+
y
2
=
2
3
∫
e
−
x
2
d
x
2\arctan y+\frac{y}{1+y^2}=\frac{2}{3}\int e^{-x^2}\mathrm{d}x
2arctany+1+y2y=32∫e−x2dx
将右边也积出来(右边的原函数不是初等函数),得到
2
arctan
y
+
y
1
+
y
2
=
2
3
∫
0
x
e
−
t
2
d
t
+
C
2\arctan y+\frac{y}{1+y^2}=\frac{2}{3}\int_0^x e^{-t^2}\mathrm{d}t+C
2arctany+1+y2y=32∫0xe−t2dt+C
代入
x
=
0
x=0
x=0,得到常数
C
C
C的表达式
C
=
2
arctan
f
(
0
)
+
f
(
0
)
1
+
f
2
(
0
)
C=2\arctan f(0)+\frac{f(0)}{1+f^2(0)}
C=2arctanf(0)+1+f2(0)f(0)
若 L = + ∞ L = + \infin L=+∞,则对 2 arctan y + y 1 + y 2 = 2 3 ∫ 0 x e − t 2 d t + C 2\arctan y+\frac{y}{1+y^2}=\frac{2}{3}\int_0^x e^{-t^2}\mathrm{d}t+C 2arctany+1+y2y=32∫0xe−t2dt+C取 x → + ∞ x \rightarrow + \infin x→+∞的极限,并利用 ∫ 0 + ∞ e − t 2 d t = π 2 \int_0^{+\infin}e^{-t^2}\mathrm{d}t=\frac{\sqrt{\pi}}{2} ∫0+∞e−t2dt=2π,得到 C = π − π 3 C=\pi-\frac{\sqrt{\pi}}{3} C=π−3π
另一方面,令
g
(
u
)
=
2
arctan
u
+
u
1
+
u
2
g(u)=2\arctan u+\frac{u}{1+u^2}
g(u)=2arctanu+1+u2u,则有
g
′
(
u
)
=
3
+
u
2
(
1
+
u
2
)
2
>
0
g'(u)=\frac{3+u^2}{(1+u^2)^2}>0
g′(u)=(1+u2)23+u2>0
所以函数 g ( u ) 在 ( − ∞ , + ∞ ) 上 严 格 单 调 递 增 g(u)在(-\infin,+\infin)上严格单调递增 g(u)在(−∞,+∞)上严格单调递增,又由于 f ( 0 ) ≤ 1 f(0)\le 1 f(0)≤1因此有
C = g ( f ( 0 ) ) ≤ g ( 1 ) = π + 1 2 C=g(f(0))\le g(1)=\frac{\pi+1}{2} C=g(f(0))≤g(1)=2π+1
但之前计算出 C = π − π 3 > π + 1 2 C=\pi-\frac{\sqrt{\pi}}{3}>\frac{\pi+1}{2} C=π−3π>2π+1,矛盾,因此假设不成立,有 lim n → ∞ f ( x ) = L \lim_{n \rightarrow \infin}f(x)=L limn→∞f(x)=L且 L L L为有限数
最后,令
M
=
max
(
∣
f
(
0
)
∣
,
∣
L
∣
)
M=\max(\left|f(0)\right|,\left|L\right|)
M=max(∣f(0)∣,∣L∣),则有
∣
f
(
x
)
∣
≤
M
,
∀
x
∈
[
0
,
+
∞
)
\left|f(x)\right|\le M, \forall x \in [0,+\infin)
∣f(x)∣≤M,∀x∈[0,+∞)