VIJOS 1923 漫长的等待

2 篇文章 0 订阅
1 篇文章 0 订阅

题意简述

给定n个数a[i] n<=10^5 1<=a[i]<=10^9
m次询问 m<=10^6
每次循环第l个数到第r个数之间,数的大小在[k,w]中的数的个数

分析

题目求的是一个二维区间和
二维树状数组?
然而n在10^5的数量级 时间与空间承受不了

二维树状数组能同时支持询问和修改
然而这题套用二维BIT的话并不需要随时修改
使用二维BIT未免大材小用了

再仔细分析题目
题目后面只是给出了m个询问,没有修改操作
那么可以考虑离线处理

先将一个询问(l,r,k,w)拆成2个询问(r,k,w)-(l-1,k,w)
(d,x,y)表示前d天大小在[x,y]间数的个数

然后就可以将所有(d,x,y)按d从小到大排序

那么我们只要按1~n的顺序不断插入a[i],在插入a[i]之后处理好d=i的 区间和询问(x,y) 就可以了

这是一个点修改 区间查询的问题

那么直接套用一维BIT就可以轻松解决了

总时间复杂度((m+n)log(m+n))

由于a[i]可能非常大,所以要先对a[i]进行离散化操作

另外这题似乎也有可持久化线段树的做法,但是线段树常数有点大,所以就没敢写了(其实我也不会写QAQ)

代码

#include<cstdio>
#include<algorithm>
using namespace std;
#define fo(i,a,b) for(int i=a;i<=b;i++)
const int mn=100000+50,mm=1000000+50;//mn最大n的大小  mm最大m的大小 
int n,m,daym[mn],ans[mm],/*rev[mm*2+mn],*/vt,vl,f[mm*2+mn];
//daym[i]第i天的思念次数  ans[i]第i个询问的答案 vt需要离散化的数个数 vl离散化后数的个数 f[i]树状数组 
struct asknode{//询问(d,x,y)表示前d天[x,y]中数的个数  p记录原来的位置 
    int d,x,y,p;
    bool operator < (const asknode &a)const{
        return d<a.d;
    }
};
asknode ask[mm*2];
struct valnode{//v表示需要离散化的数原来的大小  w记录原来的位置 
    int v,w;
    bool operator < (const valnode &a)const{
        return v<a.v;
    }
};
valnode val[mm*2+mn];
void insert(int x){//树状数组 插入 
    while (x<=vl){//x<=vt
        f[x]++;
        x+=x&(-x);
    }
}
int answer(int x){//树状数组  查询 
    int ans=0;//
    while (x){
        ans+=f[x];
        x-=x&(-x);
    }
    return ans;//
}
int main(){
    //读入 
    scanf("%d%d",&n,&m);
    fo(i,1,n){
        scanf("%d",&daym[i]);
        val[i].v=daym[i];
        val[i].w=i;
    }
    vt=n;
    int l,r,k,w;
    fo(i,1,m){
        scanf("%d%d%d%d",&l,&r,&k,&w);
        ask[i].d=l-1;ask[i].p=-i;
        ask[i+m].d=r;ask[i+m].p=i;//ask[i].p
        val[++vt].v=k;val[vt].w=n+i;
        val[++vt].v=w;val[vt].w=-n-i;
    }
    //离散化  
    sort(val+1,val+vt+1);
    fo(i,1,vt){
        if (val[i].v>val[i-1].v){
            vl++;
        }
        int &vw=val[i].w;
        if (val[i].w<0){//val[i]
            ask[-vw-n].y=vl;
            ask[-vw-n+m].y=vl;
            continue;
        }
        if (val[i].w<=n){
            daym[vw]=vl;
            continue;
        }
        ask[vw-n].x=vl;
        ask[vw-n+m].x=vl;
    }
    /*fo(i,1,n)//输出调试 离散化的结果
        printf("%d ",daym[i]);
    putchar('\n');
    fo(i,1,m)
        printf("%d %d %d %d\n",ask[i].d+1,ask[i+m].d,ask[i].x,ask[i].y);*/
    //求解原问题 
    sort(ask+1,ask+m+m+1);
    int nd=1,askd;//nd=0->TLE  //nd表示当前天数   
    fo(i,1,m+m){//1..m
        while (nd<=ask[i].d){
            insert(daym[nd]);
            nd++;
        }
        askd=answer(ask[i].y)-answer(ask[i].x-1);//askd表示(d,x,y)答案 
        if (ask[i].p>0)
            ans[ask[i].p]+=askd;
        else
            ans[-ask[i].p]-=askd;
    }
    fo(i,1,m)
        printf("%d\n",ans[i]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值