题意简述
给定n个数a[i] n<=10^5 1<=a[i]<=10^9
m次询问 m<=10^6
每次循环第l个数到第r个数之间,数的大小在[k,w]中的数的个数
分析
题目求的是一个二维区间和
二维树状数组?
然而n在10^5的数量级 时间与空间承受不了
二维树状数组能同时支持询问和修改
然而这题套用二维BIT的话并不需要随时修改
使用二维BIT未免大材小用了
再仔细分析题目
题目后面只是给出了m个询问,没有修改操作
那么可以考虑离线处理
先将一个询问(l,r,k,w)拆成2个询问(r,k,w)-(l-1,k,w)
(d,x,y)表示前d天大小在[x,y]间数的个数
然后就可以将所有(d,x,y)按d从小到大排序
那么我们只要按1~n的顺序不断插入a[i],在插入a[i]之后处理好d=i的 区间和询问(x,y) 就可以了
这是一个点修改 区间查询的问题
那么直接套用一维BIT就可以轻松解决了
总时间复杂度((m+n)log(m+n))
由于a[i]可能非常大,所以要先对a[i]进行离散化操作
另外这题似乎也有可持久化线段树的做法,但是线段树常数有点大,所以就没敢写了(其实我也不会写QAQ)
代码
#include<cstdio>
#include<algorithm>
using namespace std;
#define fo(i,a,b) for(int i=a;i<=b;i++)
const int mn=100000+50,mm=1000000+50;//mn最大n的大小 mm最大m的大小
int n,m,daym[mn],ans[mm],/*rev[mm*2+mn],*/vt,vl,f[mm*2+mn];
//daym[i]第i天的思念次数 ans[i]第i个询问的答案 vt需要离散化的数个数 vl离散化后数的个数 f[i]树状数组
struct asknode{//询问(d,x,y)表示前d天[x,y]中数的个数 p记录原来的位置
int d,x,y,p;
bool operator < (const asknode &a)const{
return d<a.d;
}
};
asknode ask[mm*2];
struct valnode{//v表示需要离散化的数原来的大小 w记录原来的位置
int v,w;
bool operator < (const valnode &a)const{
return v<a.v;
}
};
valnode val[mm*2+mn];
void insert(int x){//树状数组 插入
while (x<=vl){//x<=vt
f[x]++;
x+=x&(-x);
}
}
int answer(int x){//树状数组 查询
int ans=0;//
while (x){
ans+=f[x];
x-=x&(-x);
}
return ans;//
}
int main(){
//读入
scanf("%d%d",&n,&m);
fo(i,1,n){
scanf("%d",&daym[i]);
val[i].v=daym[i];
val[i].w=i;
}
vt=n;
int l,r,k,w;
fo(i,1,m){
scanf("%d%d%d%d",&l,&r,&k,&w);
ask[i].d=l-1;ask[i].p=-i;
ask[i+m].d=r;ask[i+m].p=i;//ask[i].p
val[++vt].v=k;val[vt].w=n+i;
val[++vt].v=w;val[vt].w=-n-i;
}
//离散化
sort(val+1,val+vt+1);
fo(i,1,vt){
if (val[i].v>val[i-1].v){
vl++;
}
int &vw=val[i].w;
if (val[i].w<0){//val[i]
ask[-vw-n].y=vl;
ask[-vw-n+m].y=vl;
continue;
}
if (val[i].w<=n){
daym[vw]=vl;
continue;
}
ask[vw-n].x=vl;
ask[vw-n+m].x=vl;
}
/*fo(i,1,n)//输出调试 离散化的结果
printf("%d ",daym[i]);
putchar('\n');
fo(i,1,m)
printf("%d %d %d %d\n",ask[i].d+1,ask[i+m].d,ask[i].x,ask[i].y);*/
//求解原问题
sort(ask+1,ask+m+m+1);
int nd=1,askd;//nd=0->TLE //nd表示当前天数
fo(i,1,m+m){//1..m
while (nd<=ask[i].d){
insert(daym[nd]);
nd++;
}
askd=answer(ask[i].y)-answer(ask[i].x-1);//askd表示(d,x,y)答案
if (ask[i].p>0)
ans[ask[i].p]+=askd;
else
ans[-ask[i].p]-=askd;
}
fo(i,1,m)
printf("%d\n",ans[i]);
return 0;
}