实际工作中,数据集很少是完整的,许多情况下样本中都会包括若干缺失值NA,这在进行数据分析和挖掘时比较麻烦。
R语言通过na.fail和na.omit可以很好地处理样本中的缺失值。
- na.fail(<向量a>): 如果向量a内包括至少1个NA,则返回错误;如果不包括任何NA,则返回原有向量a
- na.omit(<向量a>): 返回删除NA后的向量a
- attr( na.omit(<向量a>) ,”na.action”): 返回向量a中元素为NA的下标
- is.na:判断向量内的元素是否为NA
example:
data<-c(1,2,NA,2,4,2,10,NA,9)
data.na.omit<-na.omit(data)