HiveSQL 面试题 - 从订单表中查找符合指定购买条件的用户

该文描述了一个SQL查询需求,目的是从订单明细表中找出所有购买过商品1和商品2,但没有购买过商品3的用户。通过关联订单信息表和订单明细表,对用户购买的商品进行集合处理,然后筛选满足条件的用户ID。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 需求

从订单明细表(order_detail)中查询出所有购买过商品 1 和商品 2,但是没有购买过商品 3 的用户。

  • 订单信息表 order_info
order_id (订单id)user_id (用户id)create_date (下单日期)total_amount (订单金额)
11012021-09-3029000.00
101032020-10-0228000.00
  • 订单明细表 order_detail
order_detail_id(订单明细id)order_id(订单id)sku_id(商品id)create_date(下单日期)price(商品单价)sku_num(商品件数)
1112021-09-302000.002
2132021-09-305000.005
221042020-10-026000.001
231052020-10-02500.0024
241062020-10-022000.005
  • 期望结果如下
user_id
103
105

2 实现

  • 思路分析

由于订单信息分为了订单信息表和订单明细表,所以需要先将两张表的数据关联起来,取出需要的 user_id 和 sku_id 信息。

购买过商品 1 和商品 2,但是没有购买过商品 3 的用户,可以将每个用户所有购买的商品聚合成集合,再判断集合中是否包含指定的商品就可以找出符合条件的用户。

  • 实现

1 关联数据表,查出每个用户购买过的商品

SELECT
  user_id,
  collect_set (sku_id) sku_set
from
  order_detail od
  inner join order_info oi on oi.order_id = od.order_id
group by
  user_id
user_idsku_set
101[“1”,“3”,“4”,“5”,“7”,“8”,“9”,“12”]
1010[“1”,“2”,“3”,“6”,“7”,“8”,“10”,“11”,“12”]
102[“1”,“2”,“3”,“4”,“6”,“7”,“8”,“9”,“10”,“11”,“12”]
103[“1”,“2”,“4”,“5”,“6”,“8”,“10”,“11”,“12”]
104[“1”,“3”,“4”,“5”,“6”,“7”,“10”,“11”,“12”]
105[“1”,“2”,“4”,“5”,“6”,“7”,“8”,“9”,“11”,“12”]
106[“1”,“2”,“3”,“4”,“5”,“7”,“8”,“9”,“10”,“11”,“12”]
107[“1”,“2”,“3”,“4”,“5”,“6”,“7”,“8”,“9”,“10”,“11”,“12”]
108[“1”,“2”,“3”,“4”,“5”,“6”,“8”,“9”,“10”,“11”]
109[“1”,“2”,“3”,“4”,“5”,“6”,“8”,“10”,“11”,“12”]

2 使用商品集合筛选符合条件的用户

select user_id
from (SELECT user_id,
             collect_set(sku_id) sku_set
      from order_detail od
           inner join order_info oi on oi.order_id = od.order_id
      group by user_id) t1
where array_contains(sku_set, '1')
  and array_contains(sku_set, '2')
  and NOT array_contains(sku_set, '3');
user_id
103
105
### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值