- 博客(44)
- 收藏
- 关注
原创 湖南大学python头歌实训-matplotlib
本关任务:寒冷冬天两块不同金属都加热到500度,在空气中放置,温度会不断降低,在接下来的十小时内,现每隔半小时测量一次,测量得到金属块一的温度是500,470,450,400,360,330,310,290,260,240,200,180,150,120,100,80,60,50,40,30,测量得到金属块二的温度是500,440,410,380,360,310,330,295,280,230,200,170,150,120,100,70,50,30,20,10。绘制的图形保存到函数中指定的磁盘文件中。
2022-10-08 10:31:51 4088 3
原创 湖南大学python头歌实训-穷举法和二分法
再重新猜数,直到猜中为止。平台会对你编写的代码进行测试,平台生成一个包含1万个元素的列表(里面的元素每次运行时都一样),输入是一个数字x,要求函数在列表中找到2个数a,和b,使得a和b的平方和等于x,如果找到了,输出a和b(中间用空格隔开,要求a
2022-09-28 00:16:27 2301
原创 湖南大学python头歌实训-数据思维
根据提示,在右侧编辑器补充代码,按提示的要求使用matplotlib绘图,一共要求完成3个函数的设计,分别绘制线图、饼图和条形图,绘制图形的数据已在函数中指定,函数的参数是一个图片文件名,请将图片的绘制结果保存到这个图片中,图片的dpi使用默认值即可。本关任务:按提示的要求使用matplotlib绘图,一共要求完成3个函数的设计,分别绘制线图、饼图和条形图,绘制图形的数据已在函数中指定,函数的参数是一个图片文件名,请将图片的绘制结果保存到这个图片中,图片的dpi使用默认值即可。
2022-09-28 00:11:46 3320
原创 湖南大学python头歌实训-字典,元组,集合
例如,餐馆的菜单包含了菜名和价格等信息,餐馆需要将菜名和价格都展示给顾客,但也有些时候只需要将菜名都展示给厨师,还有些时候只需要将价格展示给收银员,这三种情况就用到了字典不同的遍历方式。如果输入的用户名不在列表中,提示用户名不存在,重新登录,总共三次登录机会。Python 的列表和字典可以存储任意类型的元素,所以我们可以将字典存储在列表中,也可以将列表存储在字典中,这种操作称为嵌套。比如我们对于一份菜单,菜名作为键,而值我们想是这道菜的配料,那么我们就可以将这些配料作为列表存储,然后作为值存储在字典中。
2022-09-22 23:43:28 4643 1
原创 湖南大学python头歌实训-函数
任务描述本关任务:编写一个能判断质数的函数。若参数是质数,返回true;否则返回false。主程序输入一个数n,然后调用该函数判断其是否是质数,是则显示n是质数,否则显示n不是质数。相关知识为了完成本关任务,你需要掌握:如何定义函数。定义函数def ():return 编程要求根据提示,在右侧编辑器补充代码,将定义质数的函数补充完整。测试说明平台会对你编写的代码进行测试:测试输入15;
2022-09-19 23:26:40 8685
原创 湖南大学python头歌实训-列表
Python 为列表类型提供了一系列内置操作,包括append()、insert()、pop()、remove()等函数,能够很方便的处理上述列表元素变化的情况。本关的编程任务是补全src/step2/sortTest.py 文件中的函数部分,要求实现对输入列表source_list中的元素按照首字母从小到大的顺序进行排序,并且输出排序后的列表。我们可以利用list()函数将range()生成的系列数字直接转为列表,这时range()函数的返回值将会作为list()函数的参数,输出为一个数字列表。
2022-09-05 21:58:24 9354 3
原创 湖南大学python头歌实训-字符串
这个问题中,需要对字符串进行处理,将其中的大写字符都转换为小写,并剔除字符串开头和结尾处的空格,然后在统一进行字符串匹配。Python提供了内置的字符串查找方法find(),利用该方法可以在一个较长的字符串中查找子字符串。本关的任务是,给定一个字符串,要利用Python提供的字符串处理方法,从该字符串中查找特定的词汇,并将其替换为另外一个更合适的词。注意: 由上述打印结果可以看出,上述方法的调用并不会对原始的say_hello字符串产生影响,转换后的字符串会存入新的变量中。
2022-09-05 21:39:33 5701 1
原创 湖南大学python头歌实训-循环语句
对于支持随机访问的数据结构如元组和列表,迭代器并无优势,因为迭代器在访问的时候会丢失数据索引值,但是如果遇到无法随机访问的数据结构如集合时,迭代器是唯一访问元素的方式。在这个场景中,我们先将所有同学组成一个序列,然后遍历每位同学,在遍历到每位同学时还要遍历每个同学的每门分数,计算出总成绩,最后得出每位同学的总成绩。在一个工厂的流水线上每天需要加工零件100件,且每件零件所做的加工都是一样的,也就是说流水线每天要循环做相同的工作100次,但是如果在加工时突然停电,则流水线停止对后面所有零件的加工,跳出循环。
2022-09-05 21:34:18 27088 2
原创 【数学建模】-相关系数
如果两个变量本身就是线性的关系,那么皮尔逊相关系数绝对值大的就是相关性强,小的就是相关性弱在不确定两个变量是什么关系的情况下,即使算出皮尔逊相关系数,发现很大,也不能说明那两个变量线性相关,甚至不能说他们相关,我们一定要画出散点图来看才行。...
2022-08-27 00:12:58 305
原创 机器学习笔记
机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。机器学习的两大任务:分类、回归。基于四种特征的鸟物种分类表:假定我们可以得到所需的全部特征信息,该如何判断飞入进食器的鸟是不是象牙喙啄木鸟呢?这个任务就是分类。机器学习的另一项任务是回归,它主要用于预测数值型数据。例如数据拟合曲线:通过给定数据点的最优拟合曲线。分类和回归都属于监督学习(学习数据的答案已知)。机器学习通过学习已有的信息,来对未知的信息进行推断,这个过程称为泛化。深度学习是机器学习
2022-06-06 17:56:14 1616
原创 python算法思维笔记(2)
文章目录分治的基本概念最优化问题与最优解分治=分解+解决+合并分解解决合并用递归实现分治什么是递归阶乘问题用递归解决三角形问题时间复杂度分析汉诺塔问题汉诺塔问题解题思路最大子序列和算法1:使用循环分治的基本概念在右边的数字三角形中寻找一条从顶部到底边的路径,使得路径上所经过的数字之和最大,路径上的每一步都只能往左下或右下走,只需求出最大的和,不需要给出具体路径。对于n层的数字,一共有2n-1条不同的路径。直接用循环来求出每条路径的和是非常困难的,这里我们用分治策略来解决这个问题。最优化问题与最优
2022-05-26 15:10:12 671
原创 opencv库(python)-图像基本操作
图像基本操作数据读取-图像cv2.IMREAD_COLOR:彩色图像cv2.IMREAD_GRAYSCALE:灰度图像矩阵—图像大小像素点的值(0-255)~亮度import cv2 #opencv读取的格式是BGRimport matplotlib.pyplot as pltimport numpy as np %matplotlib inline img=cv2.imread('cat.jpg')imgarray([[[142, 151, 160],
2022-05-19 23:09:06 306
原创 【数学建模】-多元线性回归分析
文章目录回归的思想回归分析:研究X和Y之间相关性的分析。相关性因变量Y自变量X回归分析的使命回归分析的分类数据的分类一元线性回归对于线性的理解回归系数的解释内生性的探究内生性的蒙特卡罗模拟核心解释变量和控制变量回归系数的解释什么时候取对数?学习来源:清风老师回归分析的任务就是,通过研究自变量X和因变量Y的相关关系,尝试去解释Y的形成机制,进而达到通过X去预测Y的目的。常见的回归分析有五类:线性回归、0‐1回归、定序回归、计数回归和生存回归,其划分的依据是因变量Y的类型。回归的思想回归分析:研究X和
2022-05-19 01:00:30 9233
原创 【深度学习】-softmax回归
学习来源:李沐老师softmax回归回归vs分类回归估计一个连续值分类预测一个离散类别MINIST:手写数字识别ImageNet:自然物体分类Kaggle上的分类问题将人类蛋白质显微镜图片分为28类将恶意软件分成9个类别将恶意的Wikipedia评论分成7类从回归到多类分类回归单连续数值输出自然区间R跟真实值的区别作为损失分类通常多个输出输出是预测为第i类的置信度均方损失对类别进行一位有效编码使用均方损失训练最大值最为预测无校验比例
2022-05-18 19:14:57 361
原创 python-数据思维
文章目录创建ndarray数组访问 数组元素numpy的基本运算pandas数据分析库matplotlib绘图绘制子图用PIL的Image处理图像用PIL的ImageDraw绘图创建ndarray数组array函数接受一切序列型的对象( 例如列表),并产生一个新的含有传入数据的numPy数组。import numpy as npdata1 = [6, 7.5, 8, 0, 1]arr1 = np.array(data1)print(arr1)[6. 7.5 8. 0. 1. ]
2022-05-18 15:36:12 828
原创 python-numpy库笔记
对象import numpy as npa = np.array([1, 2, 3])print(a)# 多于一个维度b = np.array([[1, 2], [3, 4]])print(b)# 最小维度,指定生成数组的最小维度c = np.array([1, 2, 3, 4, 5], ndmin=2)print(c)# dtype参数,数组元素的数据类型,可选d = np.array([1, 2, 3], dtype=complex)print(d)数据类型import
2022-05-16 22:32:49 227
原创 【深度学习】-线性回归
学习来源:李沐老师线性回归线性模型单层神经网络神经网络源于神经科学衡量预测质量损失函数训练数据参数学习显示解线性回归是对n维输入的加权,外加偏差使用平方损失来衡量预测值和真实值的差异线性回归有显示解线性回归可以看做是单层神经网络基础优化方法梯度下降选择学习率小批量随机梯度下降选择批量大小梯度下降通过不断沿着反梯度方向更新参数求解小批量随机梯度下降是深度学习默认的求解算法两个重要的超参数是批量大小和学习率线性回归的从零开始实现%matplot
2022-05-16 22:31:57 581
原创 python-Pandas库学习笔记
文章目录Pandas 数据结构 - SeriesPandas 数据结构 - DataFramePandas 数据结构 - Seriesimport pandas as pd# Pandas Series 类似表格中的一个列(column),类似于一维数组,可以保存任何数据类型# Series 由索引(index)和列组成a = [1, 2, 3]myvar = pd.Series(a)print(myvar)# 如果没有指定索引,索引值就从 0 开始,我们可以根据索引值读取数据a = [
2022-05-15 01:28:36 424
原创 【数学建模】预测模型之BP网络预测
学习来源:清风老师最简单的神经网络–Bp神经网络利用MATLAB 2016a进行BP神经网络的预测(含有神经网络工具箱)机器学习中的训练集,验证集和测试集机器学习中的训练集,验证集和测试集训练集(Training set) —— 用于模型拟合的数据样本。验证集(Validation set)—— 是模型训练过程中单独留出的样本集,它可以用于调整模型的超参数和用于对模型的能力进行初步评估。在神经网络中,我们用验证数据集去寻找最优的网络深度,或者决定反向传播算法的停止点或者在神经网络中选择隐藏层神
2022-05-11 00:49:59 4570 1
原创 【数学建模】预测模型笔记之灰色预测
学习来源:清风老师灰色预测灰色系统GM(1,1)模型: Grey(Gray) ModelGM(1,1)是使用原始的离散非负数据列,通过一次累加生成削弱随机性的较有规律的新的离散数据列,然后通过建立微分方程模型,得到在离散点处的解经过累减生成的原始数据的近似估计值,从而预测原始数据的后续发展。GM(1,1)模型,第一个‘1’表示微分方程是一阶的,后面的‘1’表示只有一个变量GM(1,1)原理介绍最小二乘法OLS原理介绍完全多重共线性问题再探究一阶微分方程一阶齐次线
2022-05-09 15:54:05 7494
原创 课表APP(未完成版)
使用HBuilder X,打包生成APP代码<!DOCTYPE html><html> <head> <meta charset="utf-8" /> <title>课表</title> <link rel="stylesheet" href="样式.css"> </head> <body> <div class="fi-box"> <div cl
2022-05-08 00:57:48 622
原创 python算法思维笔记(1)
常见时间复杂度时间复杂度说明举例O(1)常数217O(logn)对数4logn+12O(n)线性3n+21O(nlogn)对数线性2n+3nlogn+15O(n2)平方6n2+5n+19O(n3)立方2n3+3n2+5n+8O(2n)指数7*3n线性时间
2022-05-07 01:19:33 603
原创 MATLAB基本操作之数学-学习笔记
学习来源数学建模算法与应用(第2版)%%特殊向量t=0:0.1:10%产生从0~10的行向量,元素之间间隔为0.1%t=linspace(n1,n2,n)t=linspace(1,10,3)%产生n1和n2之间线性均匀分布的n个数(默认n时,产生100个数)%t=logspace(n1,n2,n)t=logspace(1,10,3)%在10^n1和10^n2之间按照对数距离等间距产生n个数(默认n时,产生50个数)%%特殊向量%单位矩阵%eye(m)eye(2)%eye(m,
2022-05-04 13:54:36 3296
原创 【数学建模】-聚类模型学习笔记之基于密度的聚类算法DBSCAN算法
基本概念DBSCAN是一种基于密度的聚类方法,聚类前不需要预先指定聚类的个数,生成的簇的个数不定(和数据有关)。该算法利用基于密度的聚类的概念,即要求聚类空间中的一定区域内所包含对象(点或其他空间对象)的数目不小于某一给定阈值。该方法能在具有噪声的空间数据库中发现任意形状的簇,可将密度足够大的相邻区域连接,能有效处理异常数据。DBSCAN算法将数据点分为三类:• 核心点:在半径Eps内含有不少于MinPts数目的点• 边界点:在半径Eps内点的数量小于MinPts,但是落在核心点的邻域内•
2022-05-03 13:51:26 1426
原创 pyecharts实现疫情可视化地图学习笔记
参考python爬虫之全国疫情数据可视化利用Python实现新冠疫情数据可视化python爬虫:新冠疫情累计确诊数据爬取及数据可视化效果python代码from datetime import dateimport requestsfrom pyecharts import options as optsfrom pyecharts.charts import Mapfrom pyecharts.globals import ThemeTypeupdate_date = date
2022-05-03 13:49:59 1190 1
原创 【数学建模】-聚类模型学习笔记之系统(层次)聚类
学习来源:清风老师于晶贤‐辽宁石油化工大学‐聚类分析之系统聚类法系统聚类的合并算法通过计算两类数据点间的距离,对最为接近的两类数据点进行组合,并反复迭代这一过程,直到将所有数据点合成一类,并生成聚类谱系图。系统(层次)聚类算法流程将每个对象看作一类,计算两两之间的最小距离将距离最小的两个类合并成一个新类重新计算新类与所有类之间的距离重复二三两步,直到所有类最后合并成一类结束如何分类分类准则样品与样品之间的常用距离指标与指标之间的常用“距离”夹角与夹角之
2022-05-02 14:01:03 2733
原创 【数学建模】-聚类模型学习笔记之Kmeans聚类
学习来源:清风老师我们可以更加准确的在每个类中单独使用统计模型进行估计、分析或预测;也可以探究不同类之间的相关性和主要差异。分类是已知类别的,聚类未知。K-means聚类算法算法流程指定需要划分的簇[cù]的个数K值(类的个数)随机地选择K个数据对象作为初始的聚类中心(不一定要是我们的样本点)计算其余的各个数据对象到这K个初始聚类中心的距离,把数据对象划归到距离它最近的那个中心所处在的簇类中调整新类并且重新计算出新类的中心循环步骤三和四,看中心是否收敛(不变),如果收敛或达到迭代次数则停
2022-05-01 17:56:12 1147
原创 MATLAB数据可视化学习笔记
地形地貌图形绘制%%地形地貌图形绘制[x,y]=meshgrid(1:10);%构造测量网格h=[0,0.02,-0.12,0,-2.09,0,-0.58,-0.08,0,0; 0.02,0,0,-2.38,0,-4.96,0,0,0,-0.1; 0,0.1,1,0,-3.04,0,-0.53,0,0.1,0; 0,0,0,3.52,0,0,0,0,0,0; -0.43,-1.98,0,0,0,0.77,0,2.17,0,0; 0,0,-2.29,0,0.6
2022-05-01 14:58:52 306
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人