【数学建模】-聚类模型学习笔记之Kmeans聚类

本文详细介绍了K-means聚类算法,包括其流程、优缺点,并对比了K-means++算法,强调了K值选择的重要性及解决数据量纲不一致的方法。通过学习,可以更好地理解和应用聚类模型进行数据分组和分析。
摘要由CSDN通过智能技术生成

学习来源:清风老师

我们可以更加准确的在每个类中单独使用统计模型进行估计、分析或预测;也可以探究不同类之间的相关性和主要差异。
分类是已知类别的,聚类未知。

K-means聚类算法

算法流程

  1. 指定需要划分的簇[cù]的个数K值(类的个数)
  2. 随机地选择K个数据对象作为初始的聚类中心(不一定要是我们的样本点)
  3. 计算其余的各个数据对象到这K个初始聚类中心的距离,把数据对象划归到距离它最近的那个中心所处在的簇类中
  4. 调整新类并且重新计算出新类的中心
  5. 循环步骤三和四,看中心是否收敛(不变),如果收敛或达到迭代次数则停止循环
  6. 结束
    555
    流程图

K-means算法评价

优点:

  • 算法简单、快速。
  • 对处理大数据集,该算法是相对高效率的。

缺点:

  • 要求用户必须事先给出要生成的簇的数目K。
  • 对初值敏感。
  • 对于孤立点数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤奋努力的野指针

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值