1、特点:
1、空间复杂度低,时间复杂度高
2、升序排序中每一轮比较会把最大的数下沉到最低,所以相互比较的次数每一轮会比前一轮少一次。
3、是一种稳定的排序算法
2、代码分析:
/*
冒泡排序
*/
public class My7_14_4{
public static void main (String [] args){
int [] arr = {8,12,1,5,2,19,55,78,222,111,89};
for(int i = 0;i<arr.length-1;i++){
for(int j =0; j<arr.length-1-i; j++){
if(arr[j]>arr[j+1]){
int temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
for(int k = 0;k<arr.length;k++){
System.out.print(arr[k]+" ");
}
}
}
假设有一数组为 {8,12,1,5,2,19},一共六个元素,将其按从小到大升序排列,过程如下:
“*”星号表示比较次数,两两比较之后交换位置,一轮比较之后去掉最后一个最大的
第一轮比较(相邻元素两两比较) :8*1*5*2*12*19
第二轮比较(相邻元素两两比较) :1*5*2*8*12
第三轮比较(相邻元素两两比较) :1*2*5*8
第四轮比较(相邻元素两两比较) :1*2*5
第五轮比较(相邻元素两两比较) :1*2
经过分析 其比较的过程类似打印倒三角形:
*****
****
***
**
*
这个图形相信大家都会打印,两个for循环用来控制打印的行和列,关键在于内部,
通过比较两个相邻的元素,如果满足前面的大于后面的元素,则交换位置,将大的移动到后面。
最后打印出排序后的数组即可。
3、时间复杂度:
经过以上分析比较6个元素一共比较了5轮, 第一轮比较了6-1次, 第二轮比较了6-2次 ,第三轮比较了6-3...
所以一共比较了6-1 + 6-2 + 6-3 + 6-4 + 6-5 = (1+5)X5/2=15
假设现在有n个数比较了n-1轮, 第一轮比较n-1次 ,第二轮比较 n-2 次...最后一轮(第n-1轮)比较1次,所以比较的次数为 (n-1 +1)X (n-1)/2 =
1、省略常数项
2、省略低次幂项
3、省略最高次幂的系数
4、如果是常数,表示为O(1)
根据以上四个法则,我们得到时间复杂度为 : O()
4、空间复杂度:
在冒泡排序的整个运算过程中,仅仅使用了一个可以重复利用的临时变量temp,
所以空间复杂度为:O(1)
5、稳定性:
在比较的过程中,如果相邻的两个数相等,这两个元素并不会进行交换
并且,每一轮的比较都是从数组的最开始,一步一步向后比较,不会出现两个元素值相同而进行互换的情况
所以是一种稳定的排序方法