LeetCode 669. 修剪二叉搜索树
LeetCode 108. 将有序数组转换为二叉搜索树
LeetCode 538.把二叉搜索树转换为累加树
修剪二叉搜索树
修剪二叉搜索树,使得所有节点的值在[low, high]中。
注意: 当遇到不在这个区间的内的节点不能直接置 null , 因为可能遇到其左右节点是在这个区间内的。
在上图中我们发现节点0并不符合区间要求,那么将节点0的右孩子 节点2 直接赋给 节点3的左孩子就可以了(就是把节点0从二叉树中移除),如图:
class Solution {
TreeNode right;
TreeNode left;
public TreeNode trimBST(TreeNode root, int low, int high) {
if (root == null) return null;
if (root.val < low) {
right = trimBST(root.right, low, high); // 继续向右遍历,不能不递归直接return
return right;
}
if (root.val > high) {
left = trimBST(root.left, low, high);
return left;
}
root.left = trimBST(root.left, low, high); // root->left接入符合条件的左孩子
root.right = trimBST(root.right, low, high); // root->right接入符合条件的右孩子
return root;
}
}
迭代法
因为二叉搜索树的有序性,不需要使用栈模拟递归的过程。
在剪枝的时候,可以分为三步:
- 将root移动到[L, R] 范围内,注意是左闭右闭区间
- 剪枝左子树
- 剪枝右子树
class Solution {
public TreeNode trimBST(TreeNode root, int low, int high) {
if (root == null) return null;
// 根节点处理逻辑
// 处理头结点,让root移动到[L, R] 范围内,注意是左闭右闭
while (root != null && (root.val < low || root.val > high)) {
if (root.val < low) {
root = root.right;
} else {
root = root.left;
}
}
TreeNode cur = root;
// 左子树处理逻辑
while (cur != null) {
while (cur.left != null && cur.left.val < low) {
cur.left = cur.left.right;
}
cur = cur.left;
}
cur = root; //go back to root;
// 右子树处理逻辑
while (cur != null) {
while (cur.right != null && cur.right.val > high) {
cur.right = cur.right.left;
}
cur = cur.right;
}
return root;
}
}
将有序数组转换为二叉搜索树
一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。
高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。
这个题让构造平衡二叉搜索树,怎么样是平衡的呢,第一步想的就是取中间节点作为根节点,左右分隔,这样左右节点数就一致了,但是向下递归时,仍旧需要保持这一策略,这样每个节点的左右两个子树的高度差的绝对值将会不超过 1。
class Solution {
public TreeNode sortedArrayToBST(int[] nums) {
TreeNode root = traversal(nums, 0, nums.length - 1);
return root;
}
private TreeNode traversal(int[] nums, int left, int right) {
// 当区间 left > right的时候,就是空节点
// 平衡二叉树: 每次递归都选中间节点,左右分隔,这样左右节点数就一致了/差1。
if (left > right) return null;
int mid = left + (right - left) / 2;
TreeNode root = new TreeNode(nums[mid]);
root.left = traversal(nums, left, mid - 1);
root.right = traversal(nums, mid + 1, right);
return root;
}
}
迭代法可以通过三个队列来模拟,一个队列放遍历的节点,一个队列放左区间下标,一个队列放右区间下标。
class Solution {
public TreeNode sortedArrayToBST(int[] nums) {
if (nums.length == 0) return null;
// 根节点初始化
TreeNode root = new TreeNode(-1);
Queue<TreeNode> nodeQueue = new LinkedList<>();
Queue<Integer> leftQueue = new LinkedList<>();
Queue<Integer> rightQueue = new LinkedList<>();
// 根节点入队列
nodeQueue.offer(root);
// 0 为左区间下标初始位置
leftQueue.offer(0);
// nums.length - 1为右区间下标初始位置
rightQueue.offer(nums.length - 1);
while (!nodeQueue.isEmpty()) {
TreeNode currNode = nodeQueue.poll();
int left = leftQueue.poll();
int right = rightQueue.poll();
int mid = left + ((right - left) / 2);
// 将mid对应的元素给中间节点
currNode.val = nums[mid];
// 处理左区间
if (left <= mid - 1) {
currNode.left = new TreeNode(-1);
nodeQueue.offer(currNode.left);
leftQueue.offer(left);
rightQueue.offer(mid - 1);
}
// 处理右区间
if (right >= mid + 1) {
currNode.right = new TreeNode(-1);
nodeQueue.offer(currNode.right);
leftQueue.offer(mid + 1);
rightQueue.offer(right);
}
}
return root;
}
}
把二叉搜索树转换为累加树
给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。
右中左遍历,记录前一个节点的数值,加在当前节点的数值上。
class Solution {
int pre = 0; // 前一个节点的数值
public TreeNode convertBST(TreeNode root) {
pre = 0;
traversal(root);
return root;
}
private void traversal(TreeNode cur) {
if (cur == null) return;
traversal(cur.right);
cur.val += pre;
pre = cur.val;
traversal(cur.left);
}
}