时间限制: 1 Sec 内存限制: 2 MB
题目描述
键盘输入一个高精度的正整数N(此整数中没有‘0’),去掉其中任意S个数字后剩下的数字按原左右次序将组成一个新的正整数。编程对给定的N和S,寻找一种方案使得剩下的数字组成的新数最小。
输出应包括所去掉的数字的位置和组成的新的正整数。(N不超过10^8位)
输入数据均不需判错。
输入
N
S
输出
最后剩下的最小数。
样例输入
175438
4
样例输出
13
思路:
1.一看到该题目时,立刻想到了利用桶排的思想,后来再看题目发现有要求“剩下的数从左到右”,立刻排除这种思路(所以看清题目很重要啊!)
2.然后又想到遍历数组,将数字从大到小剔除S个,结果答案不对,题目要求数字顺序不能改变,因此数的位数越高对整个数的值影响越大,即使一个整数个位是9,也不一定要剔除掉。
3.经过其他博客的启发,发现一条定理:“从头开始遍历,删除递减序列的起点,可使数值在题目条件下最小”,倘若递减序列不足,则从数组末尾往前删除剩余个数个数。
代码:
再加一组测试数据:
156987
3
156
#include<stdio.h>
#include<string.h>
#define max 300
int main()
{
char ch[max];
int n;
scanf("%s %d",ch,&n);
int length = strlen(ch);
while(n--)
{
for(int i = 0 ; i<length ; i++)
{
if(i==length-1)
{
length--;
break;
}//找不到递减序列就往后面删除一个
else
{
if(ch[i]>ch[i+1])
{
for(int j = i ; j<length-1; j++)
ch[j] = ch[j+1];
length--;
break;
}
}
}
}
for(int i = 0 ; i<length ; i++)
{
printf("%c",ch[i]);
}
return 0;
}