题目描述:
键盘输入一个高精度的正整数N(此整数中没有‘0’),去掉其中任意S个数字后剩下的数字按原左右次序将组成一个新的正整数。编程对给定的N和S,寻找一种方案使得剩下的数字组成的新数最小。 输出应包括所去掉的数字的位置和组成的新的正整数。(N不超过240位)
样例输入
175438
4
样例输出
13
思路:(典型的贪心策略,方法就是从简单入手,慢慢复杂。从n=1开始推导就会发现规律)
现在假设有一个数,124682385,假如n = 1,则结果为12462385。n = 2,结果为1242385。可以知道:最优解是删除出现的第一个左边>右边的数,因为删除之后高位减小,很容易想...那全局最优解也就是这个了,因为删除S个数字就相当于执行了S次删除一个数,因为留下的数总是当前最优解...
这样,就可以很容易写出来了。。。。。。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<vector>
#include<map>
#include<stack>
#include<queue>
#include<algorithm>
using namespace std;
#define max(a, b) a > b ? a : b
#define min(a, b) a < b ? a : b
#pragma comment(linker, "/STACK:102400000,102400000")
string cmp(string &str, int n)
{
string::iterator start;
bool flag;
for(int i = n; i > 0; --i)
{
flag = 0;
for(start = str.begin(); start < str.end() - 1; ++start)
{
if(*start > *(start + 1)) // 每次删除第一个比下一个数字大的数
{
str.erase(start);
flag = 1;
break;
}
}
if(!flag) //如果所有数字递增,则删除最后几个数字直接返回
{
str.erase(str.end() - i, str.end());
break;
}
}
return str;
}
int main()
{
//freopen("Input.txt", "r", stdin);
int ncase, n;
string str;
scanf("%d", &ncase);
while(ncase--)
{
cin>>str;
getchar();
scanf("%d", &n);
cout<<cmp(str, n)<<endl;
}
return 0;
}