209. 长度最小的子数组

本文探讨了一种利用双指针技巧解决最小面积子矩阵问题的方法,针对二维数组中的非负数情况,并提到了处理负数时的思路转换。通过将二维数组压缩成一维,展示了如何用树状数组优化求解过程。还提供了一个代码示例和一个类似题目的修复版,适合前端开发者和后端技术挑战者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

思路

  • 考查点:双指针
  • 达到目标值就开始滑动左边的指针

代码

class Solution {
public:
    int minSubArrayLen(int target, vector<int>& nums) {
        int n = nums.size();
        int len = n + 1;
        for(int i = 0, j = 0, s = 0; i < n; i++){
				s += nums[i];
				while(s >= target){  
					len = min(len, i - j + 1);
					s -= nums[j++];
				}
			} 
		if(len == n+1) return 0;
        return len;
    }
};

类似题

KY106 最小面积子矩阵

  • 这道题其实有bug,因为数据给的比较水,矩阵中的值没有负数,所以才能利用上面这题的这个性质,如果有负数,就需要换个思路考虑。之前做过类似的,需要用树状数组。
  • 把二维数组压缩到一维进行处理。
#include <bits/stdc++.h>
using namespace std;
const int N = 110;
int a[N][N], sum[N][N], f[N];
int m, n, k;
int main(){
	cin>>m>>n>>k;
	for(int i = 1; i <= m; i++){
		for(int j = 1; j <= n; j++){
			cin>>a[i][j];
			sum[i][j] = sum[i-1][j] + a[i][j];
		}
	}
	int ans = INT_MAX;
	for(int i = 1; i <= m; i++){
		// 枚举的首行 
		for(int j = i; j <= m; j++){
			// 枚举的末行
			memset(f, 0, sizeof f);
			for(int u = 1; u <= n; u++) f[u] = sum[j][u] - sum[i-1][u];
			// 一维子数组大于等于k的最短长度
			int len = n+1;
			// 双指针
			for(int i = 1, j = 1, s = 0; i <= n; i++){
				s += f[i];
				while(s >= k){  // 只有正数才满足 
					len = min(len, i - j + 1);
					s -= f[j++];
				}
			} 
			if(len == n+1) continue;
			ans = min(ans, len*(j - i + 1));
			
		}
	}
	if(ans == INT_MAX) cout<<"-1"<<endl;
	else cout<<ans<<endl;
	
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值