欧拉回路【浙江大学】★

牛客网题目链接

无向图的欧拉回路判断

1.图连通
2.所有顶点的度为偶数

有向图的欧拉回路判断

1.图连通
2.图中所有节点入度等于出度

版本2

本道题不需要判断图是否连通,只需要判断顶点的度为偶数即可。

#include <iostream>
#include <vector>
#include <string>
#include <cmath>
#include <algorithm>
#include <queue>
#include <cstdio>
#include <cctype>
#include <unordered_map>
#include <map>
using namespace std;
const int N = 1005;
typedef pair<int, string> PII;
int root[N];
int find(int x){
	if(x != root[x]) root[x] = find(root[x]);
	return root[x];
}
void init(int n){
	for(int i = 1; i <= n; i++){
		root[i] = i;
	}
}
int main() {
	int n, m;
	while(cin>>n){
		if(!n) break;
		cin>>m;
		int u, v;
		int num = n;
		int deg[N]={0};
		init(n);	
		while(m--){
			cin>>u>>v;
			if(u==v) continue;
			deg[u]++;
			deg[v]++;
			int a = find(u);
			int b = find(v);
			if(a != b){
				root[b] = a;
				num--;
			}
		}
		int tag = 0;
		//if(num != 1) cout<<0<<endl;
		for(int i = 1; i <= n; i++){
			if(deg[i]&1){
				tag = 1;
				break; 
			}
		}
		if(tag) cout<<0<<endl;
		else cout<<1<<endl;
	
	}
	return 0;
}


版本1

#include<cstdio>
#define N 1005
int father[N];
int num[N];
int findFather(int x){
	if(x == father[x]) return x;
	else{
		int tp = findFather(father[x]);
		father[x] = tp;
		return tp;
	} 
} 

int main(){
	int n,m,x,y;
	while(scanf("%d%d",&n,&m) != EOF){
		if(n==0) break;
		for(int i=1;i<=n;i++){
			father[i] = i;
			num[i] = 0;
		}
		for(int i=1;i<=m;i++){
			scanf("%d%d",&x,&y);
			num[x]++;
			num[y]++;
			int fax = findFather(x);
			int fay = findFather(y);
			if(fax != fay){
				father[fax] = fay;
			}
		}
		int ans = findFather(1),tag = 1;
		if(num[1]&1) tag = 0; 
		for(int i=2;i<=n;i++){
			if((num[i]&&findFather(i)!= ans)||(num[i]&1)){//1.该顶点存在,同时不连通(根节点不同)说明不是欧拉回路 
				tag = 0;                                   //2.该顶点为奇数(已经包含了顶点存在) 
				break;                                     //所以,总结一下出错的原因:没有考虑该顶点是否存在就直接判断了 
			}
		}
		printf("%d\n",tag);
	
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值