无向图的欧拉回路判断
1.图连通
2.所有顶点的度为偶数
有向图的欧拉回路判断
1.图连通
2.图中所有节点入度等于出度
版本2
本道题不需要判断图是否连通,只需要判断顶点的度为偶数即可。
#include <iostream>
#include <vector>
#include <string>
#include <cmath>
#include <algorithm>
#include <queue>
#include <cstdio>
#include <cctype>
#include <unordered_map>
#include <map>
using namespace std;
const int N = 1005;
typedef pair<int, string> PII;
int root[N];
int find(int x){
if(x != root[x]) root[x] = find(root[x]);
return root[x];
}
void init(int n){
for(int i = 1; i <= n; i++){
root[i] = i;
}
}
int main() {
int n, m;
while(cin>>n){
if(!n) break;
cin>>m;
int u, v;
int num = n;
int deg[N]={0};
init(n);
while(m--){
cin>>u>>v;
if(u==v) continue;
deg[u]++;
deg[v]++;
int a = find(u);
int b = find(v);
if(a != b){
root[b] = a;
num--;
}
}
int tag = 0;
//if(num != 1) cout<<0<<endl;
for(int i = 1; i <= n; i++){
if(deg[i]&1){
tag = 1;
break;
}
}
if(tag) cout<<0<<endl;
else cout<<1<<endl;
}
return 0;
}
版本1
#include<cstdio>
#define N 1005
int father[N];
int num[N];
int findFather(int x){
if(x == father[x]) return x;
else{
int tp = findFather(father[x]);
father[x] = tp;
return tp;
}
}
int main(){
int n,m,x,y;
while(scanf("%d%d",&n,&m) != EOF){
if(n==0) break;
for(int i=1;i<=n;i++){
father[i] = i;
num[i] = 0;
}
for(int i=1;i<=m;i++){
scanf("%d%d",&x,&y);
num[x]++;
num[y]++;
int fax = findFather(x);
int fay = findFather(y);
if(fax != fay){
father[fax] = fay;
}
}
int ans = findFather(1),tag = 1;
if(num[1]&1) tag = 0;
for(int i=2;i<=n;i++){
if((num[i]&&findFather(i)!= ans)||(num[i]&1)){//1.该顶点存在,同时不连通(根节点不同)说明不是欧拉回路
tag = 0; //2.该顶点为奇数(已经包含了顶点存在)
break; //所以,总结一下出错的原因:没有考虑该顶点是否存在就直接判断了
}
}
printf("%d\n",tag);
}
return 0;
}