Series = 索引 + 一维数据
1.保存csv数据
df.to_csv('train.csv')
2.读取csv数据
data = pd.read_csv('train.csv')
3.保存excel数据
df.to_excel('train.xlsx',sheet_name='name')
4.读取excel数据
data = pd.read_excel('train.xlsx')
5.从列表创建Series
如果不指定索引,默认从0开始,取0,1,2,3,……
arr=[0,1,2,3,4]
sr1 = pd.Series(arr)
6.从ndarray创建
a = np.array([1,2,3,4,5])
index=['a','b','c','d','e']
sr2 = pd.Series(a, index = index)
7.从range创建
sr3 = pd.Series(range(20)) #0-19的20个数
8.从字典创建
d={'a':1,'b':2,'c':3}
sr4 = pd.Series(d)
9.修改Series索引
sr1.index =['A','B','C','D','E']
10.Series纵向拼接
sr4=sr3.append(sr1)
11.按指定索引删除元素
sr4 = sr4.drop('e')
12.修改指定索引元素
sr4['A']=6
13.按指定索引查找元素
sr4['B']
14.切片
sr4[:3] #取出第0,1,2这三行的元素,不含第3行
15.Series运算
series的加减乘除运算都是按照索引计算,如果索引不同则填充为NaN(not a number,即空值)
sr4.add(sr3) #等价于sr4 + sr3
sr4.sub(sr3)
sr4.mul(sr3)
sr4.div(sr3)
16.Series常用函数
sr.median() #求中位数
sr.sum() #求和
sr.max() #求最大
sr.min() #求最小
sr.mean() #求均值
sr.cumsum() #求累计和
sr.index
sr.values
17.布尔值过滤
sr[sr > 0] #输出大于0的元素
sr[sr > median()] #输出大于中位数的元素