1096 Consecutive Factors (20 分)

主要思路:
因为本题是要输出连续的因子,所以只用记录开始的数和长度。
注意:
判断一个数的因子的时候,上界是sqrt(n),但是这个值可以取到,即必须是小于等于,不然会出错。

#include<cstdio>
#include<iostream>
#include<cmath>
using namespace std;
typedef long long LL;
int main(){
	LL n;
	scanf("%lld",&n);
	LL st,maxL=0;
	LL sqr = (LL)sqrt(1.0*n);
	
	for(LL i=2;i <= sqr; i++){
		LL temp = 1,j = i;
		while(1){
			temp =temp * j;
			if(n % temp != 0) break;
			if(j - i + 1 > maxL){
				maxL = j-i + 1;
				st = i;
			}
			j++;
		}
	}
	if(maxL == 0) printf("1\n%lld",n);
	else{
		printf("%lld\n",maxL);
		for(LL i = st;i< st+maxL; i++){
			printf(i==st?"%lld":"*%lld",i);
		}
	}

	return 0;
}
解释代码内容: def run_backend(cfg, model, states, keyframes, K): set_global_config(cfg) device = keyframes.device factor_graph = FactorGraph(model, keyframes, K, device) retrieval_database = load_retriever(model) mode = states.get_mode() while mode is not Mode.TERMINATED: mode = states.get_mode() if mode == Mode.INIT or states.is_paused(): time.sleep(0.01) continue if mode == Mode.RELOC: frame = states.get_frame() success = relocalization(frame, keyframes, factor_graph, retrieval_database) if success: states.set_mode(Mode.TRACKING) states.dequeue_reloc() continue idx = -1 with states.lock: if len(states.global_optimizer_tasks) > 0: idx = states.global_optimizer_tasks[0] if idx == -1: time.sleep(0.01) continue # Graph Construction kf_idx = [] # k to previous consecutive keyframes n_consec = 1 for j in range(min(n_consec, idx)): kf_idx.append(idx - 1 - j) frame = keyframes[idx] retrieval_inds = retrieval_database.update( frame, add_after_query=True, k=config["retrieval"]["k"], min_thresh=config["retrieval"]["min_thresh"], ) kf_idx += retrieval_inds lc_inds = set(retrieval_inds) lc_inds.discard(idx - 1) if len(lc_inds) > 0: print("Database retrieval", idx, ": ", lc_inds) kf_idx = set(kf_idx) # Remove duplicates by using set kf_idx.discard(idx) # Remove current kf idx if included kf_idx = list(kf_idx) # convert to list frame_idx = [idx] * len(kf_idx) if kf_idx: factor_graph.add_factors( kf_idx, frame_idx, config["local_opt"]["min_match_frac"] ) with states.lock: states.edges_ii[:] = factor_graph.ii.cpu().tolist() states.edges_jj[:] = factor_graph.jj.cpu().tolist() if config["use_calib"]: factor_graph.solve_GN_calib() else: factor_graph.solve_GN_rays() with states.lock: if len(states.global_optimizer_tasks) > 0: idx = states.global_optimizer_tasks.pop(0)
最新发布
03-17
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值