- 博客(251)
- 收藏
- 关注
原创 Docker 容器中运行昇腾(Ascend)AI 环境
这条命令用于在 Docker 容器中运行昇腾(Ascend)AI 环境,并通过**目录挂载(Volume Mount)**使容器能访问宿主机的昇腾驱动和相关配置。,让容器内的 CANN 工具链能访问宿主机的昇腾硬件资源。确保宿主机环境正确,并根据实际需求调整设备挂载和权限参数。进行 Python 推理,需要正确安装 CANN 组件并配置容器挂载。的安装包,分别针对不同用途和组件。,说明驱动未正确挂载或镜像内未安装。如需更复杂的训练场景,需额外安装。此命令的核心是通过挂载。如有其他问题,建议查阅。
2025-08-09 09:52:31
875
1
原创 RK3588 源码编译 opencv
(最新版本),但 OpenCV 4.8.1 在编译时仍然找不到。,或者 OpenCV 的编译配置存在问题。从你的输出信息来看,系统已经安装了。OpenCV 可能链接到了错误的。
2025-07-06 08:45:53
286
原创 傅里叶级数 定义
傅里叶级数是将周期函数表示为一系列正弦和余弦函数的线性组合:f(x)∼a02+∑n=1∞(ancosnx+bnsinnx)f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos nx + b_n \sin nx \right)f(x)∼2a0+n=1∑∞(ancosnx+bnsinnx)其中:直流分量:a0=1π∫−ππf(x) dxa_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \
2025-07-01 05:34:45
1231
原创 UDP 和 TCP 可以同时使用相同的端口号
简而言之,端口号是协议相关的,因此一个端口号可以同时用于 UDP 和 TCP,只要它们在不同的协议中使用。例如,端口号 80 通常用于 HTTP(TCP 协议),但也可以在 UDP 协议下使用,用于某些特定的应用。是的,UDP 和 TCP 的端口号是可以相同的。虽然它们使用相同的端口号,但是由于 UDP 和 TCP 是不同的协议,因此它们的端口号在通信中是独立的。所以,两个协议共享相同的端口号是完全可行的,它们之间不会互相冲突,因为每种协议有自己独立的通信上下文。
2025-06-26 23:26:43
366
原创 随机存储器(RAM)随机访问性 易失性 高速读写 低延迟 高带宽
比硬盘、SSD 访问速度更快,是 CPU 的工作区。:可直接访问任意地址的数据,速度快。:相较硬盘小,但可扩展,受主板限制。:断电即失效,数据不持久保存。:频率越高,数据传输能力越强。:需定期刷新电荷保持数据。:适用于缓存和高性能应用。:双通道、四通道提升带宽。:支持按字节或字寻址。储器 – 内存)**
2025-06-18 11:19:42
426
原创 DRAM 的集成度高于 SRAM
DRAM(动态随机存取存储器)和 SRAM(静态随机存取存储器)是两种主要的半导体存储器,它们在结构、性能和适用场景上有显著差异。其中,
2025-06-18 10:49:36
964
原创 分散刷新 动态调整(可暂停或推迟) 无死区时间
要理解这两种刷新方式的区别,关键在于它们如何安排刷新操作,以及是否会影响正常的读写请求。的设计,几乎消除了死区时间,而异步刷新仅用于特殊场景(如低功耗模式)。,使刷新操作对系统透明,几乎不影响性能,因此没有死区时间。,会在刷新期间阻止正常访问,因此存在死区时间。现代DRAM(如DDR4/DDR5)主要采用。
2025-06-18 10:40:19
695
原创 SSD 具备“随机访问”的能力,但它不是 RAM,RAM分为 SRAM 和 DRAM
👉SSD 具备“随机访问”的能力,但它不是 RAM,因为它是为“长期存储”设计的,速度慢很多,且不连接在内存总线上,不能参与 CPU 的实时高速处理。(即持久内存)——你想听吗?
2025-06-18 01:08:55
241
原创 ROM 只读存储器 随机存取
如需更深入探讨 ROM 在某个应用场景(如 BIOS、嵌入式系统、单片机)中的行为,也可以继续问我。尽管“ROM”强调的是“只读”,它的。
2025-06-17 23:51:28
383
原创 **RAM**、**SAM** 和 **DAM**
特性RAMSAMDAM访问方式随机(任意地址直接访问)严格顺序(从头开始)直接定位区块 + 局部顺序访问时间恒定(O(1))可变(O(n))可变(取决于寻址时间)典型硬件内存条(DRAM/SRAM)磁带硬盘(HDD)、光盘速度排名最快最慢中等应用场景需要高速读写的场景归档、备份等低频访问大容量持久化存储。
2025-06-17 23:44:00
370
原创 减少行数 可缩短刷新周期
原因解释DRAM 是按“行”刷新一次刷新一整行行数越多刷新周期(所有行刷新)内要刷新更多次减少行数减少刷新周期(所有行刷新)每行刷新周期允许更长保持容量不变 → 需要增加列数列数多不影响刷新,只影响读写宽度或地址逻辑。
2025-06-16 19:34:44
225
原创 刷新周期 DRAM 的所有行 至少刷新一次
刷新周期(Total Refresh Period):是指必须在这个时间内将 DRAM 的所有行都刷新一遍。所有行必须在64ms内完成刷新(有些是 32ms,工业级可能更短)问题答案刷新周期是刷新所有行吗?✅ 是的,必须刷新所有行是同时刷新所有行吗?❌ 不是,是逐行刷新为什么要刷新所有行?因为所有行的电容都会漏电,数据都会失效。
2025-06-16 19:29:28
332
原创 DRAM(动态随机存取存储器) 集成度高 一个晶体管 + 一个电容
原因说明结构简单每个存储单元仅需 1 晶体管 + 1 电容单元小可以用极小面积构成一个bit易于阵列排布适合大规模矩阵化排列制造工艺成熟可低成本制造高密度芯片刷新机制替代锁存结构减少晶体管数量,提高密度如果你想看 SRAM 和 DRAM 电路图对比,我也可以画给你。是否需要?
2025-06-16 19:19:15
440
原创 译码输出线连接的是存储单元
项目连接/控制对象译码器输出线连接的是整个“存储单元存储单元包含若干“存储位 bit”数据总线与存储单元的所有位并行连接,读写全部内容控制信号(读/写)控制操作方向(读 or 写)
2025-06-16 16:56:50
820
原创 相联存储器
相联存储器是一种可以根据内容快速定位数据的硬件存储结构,在需要高效匹配和高速查找的场景(如Cache、TLB、网络设备)中发挥关键作用。如你需要我画一张结构图或分析具体案例(如Cache中的应用),也可以告诉我!
2025-06-16 11:43:23
549
原创 黎曼重排定理
性质绝对收敛条件收敛项极限为0✅ 必须✅ 必须(\suma_n) 收敛✅ 是❌ 否重排后是否一定收敛✅ 是❌ 否重排后和是否不变✅ 是❌ 可变(任意)可通过重排发散❌ 否✅ 是。
2025-06-16 00:26:24
1058
原创 条件收敛的级数中项必须趋于 0,正负项抵消,但趋于 0 的速度不需要“足够快”
条件收敛的级数中,项ana_nan正负抵消是收敛的主要机制,而非∣an∣|a_n|∣an∣的快速衰减;莱布尼茨判别法等工具允许较慢的衰减速度(如1nn11lnnlnn1绝对收敛和条件收敛的“收敛动力”来源不同,前者依赖项的绝对值,后者依赖项的符号交替。
2025-06-16 00:03:51
1010
原创 绝对收敛 趋于 0 的速度足够快 | 条件收敛 --> 项趋于 0 正负项相互抵消
✅ 收敛级数的项必须趋于 0;✅ 绝对收敛: 趋于 0 的速度足够快;✅ 条件收敛: 趋于 0,依赖于正负项的抵消;
2025-06-15 23:59:14
1040
原创 调和级数 敛散性
∑n1∞1n1121314⋯n1∑∞n11213141⋯级数形式敛散性∑1n∑n1发散(调和级数)∑1npp1∑np1p1收敛∑1npp≤1∑np1p≤1发散如果你想看变种调和级数(例如交错调和级数)是否收敛,我也可以继续讲。是否需要?
2025-06-15 23:09:42
1170
原创 收敛性 实例
xxx的取值范围收敛情况x< 1 )绝对收敛x−1x = -1x−1条件收敛x1x = 1x1发散x> 1 )发散如需进一步推导它的和函数(它和ln1−x\ln(1 - x)ln1−x−ln1−x−ln1−x有关),也可以继续问我!
2025-06-15 20:53:59
701
原创 幂级数收敛半径 绝对收敛 --> 绝对收敛/条件收敛/发散 --> 一定收敛
幂级数在收敛半径RRR以内是绝对收敛的(不会有条件收敛)。条件收敛只可能发生在边界∣x−x0∣R∣x−x0∣R处的某个端点。实际是否条件收敛,还要具体判断端点的情形。
2025-06-15 20:46:51
1012
原创 FTP 并不适合用在两个计算机之间共享读写文件 为什么
理由FTP 不适合共享读写的原因❌ 无锁机制不支持并发访问控制,可能数据冲突❌ 非实时不支持文件变化实时同步❌ 客户端-服务器单向模式不适合对等主机共享操作❌ 安全性弱明文传输,不适合敏感协作❌ 不可挂载无法当作文件系统直接读写如你想搭建共享读写系统,我可以根据你使用的操作系统推荐合适的方案(如 Linux 下使用 NFS,Windows 与 Linux 共享用 SMB),是否继续?
2025-06-15 20:01:38
434
原创 DNS递归查询步骤
我们以一个真实存在的四级域名 mail.nyc1.ny.us.example.com。是一个真实注册的域名)为例,完整解析DNS递归查询流程。“我不知道,但你可以问。
2025-06-15 18:25:10
471
原创 HEAD ` 只返回响应头(Headers),不返回正文内容(Body)
在 HTTP 协议中,HEAD向服务器请求与GET相同的响应,但不返回响应体(Body)。问题答案HEAD为什么不返回正文内容?因为它的设计目标是仅获取资源的元信息,节省带宽,提高效率,不需要实际内容本身。使用场景?资源是否存在、缓存验证、文件大小检测、权限检查等。和GET区别?GET返回正文,HEAD不返回正文;其余行为应一致。如你想看HEAD方法的代码实现(如 Pythonrequests,Node.js,或服务器端如何响应HEAD),我可以为你举例说明。是否需要?
2025-06-14 20:16:52
515
原创 偶数项收敛半径
子级数类型变量替换子级数收敛半径RyR_yRy对应原变量xxx的收敛半径RxR_xRx偶次项yx2y = x^2yx21p1/p1/p1p\sqrt{1/p}1/p奇次项yx2y = x^2yx21p1/p1/p1p\sqrt{1/p}1/p。
2025-06-14 17:43:51
642
原创 1的无穷次方
表达式1^∞并没有固定结果,它是一个不定型(indeterminate form)。111,如果底数严格等于 1;eee,如果是11nn1n1n;其他值,甚至趋于无穷大或 0。1^∞ 这是一个不定式。
2025-06-14 10:17:24
456
原创 多元函数凑微分
2xydxx2dy\boxed{2xydxx2dyydx2x2dydx2y\boxed{ydx2x2dydx2y乘法法则若fxyf(x, y)fxydffxdxfydydffxdxfydy凑微分就是逆向地构造这个形式。
2025-06-14 10:05:44
1093
原创 多元函数极值的充分条件 AC - B²
AC−B2AC - B^2AC−B2AC - B²的来源是 Hessian 行列式(即二次型判定法中矩阵的行列式),它反映了函数在驻点的曲率结构:像一个盆(极值):像马鞍(鞍点)fxyx2y2fxyx2y2fxyx2−y2fxyx2−y2你可以说一声我继续补充。
2025-06-14 09:59:04
1055
原创 多元函数极值的充分条件 AC - B²
AC−B2AC - B^2AC−B2AC - B²的来源是 Hessian 行列式(即二次型判定法中矩阵的行列式),它反映了函数在驻点的曲率结构:像一个盆(极值):像马鞍(鞍点)fxyx2y2fxyx2y2fxyx2−y2fxyx2−y2你可以说一声我继续补充。
2025-06-14 08:28:03
1297
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人