secx cosx


一、sec x 是什么?

sec x(正割函数) 是余弦函数的倒数,定义如下:

sec ⁡ x = 1 cos ⁡ x \sec x = \frac{1}{\cos x} secx=cosx1


二、为什么 sec x 是 cos x 的倒数?

这是三角函数中“倒数函数”定义的一部分:

在直角三角形中(单位圆中也适用),我们有以下六个基本三角函数,它们可分为两组对偶关系:

原函数倒数函数关系公式
sin xcsc x csc ⁡ x = 1 sin ⁡ x \csc x = \frac{1}{\sin x} cscx=sinx1
cos xsec x sec ⁡ x = 1 cos ⁡ x \sec x = \frac{1}{\cos x} secx=cosx1
tan xcot x cot ⁡ x = 1 tan ⁡ x \cot x = \frac{1}{\tan x} cotx=tanx1

所以,sec x 就是 cos x 的倒数,这是它的定义


例如:

d d x [ sec ⁡ x ] = sec ⁡ x tan ⁡ x \frac{d}{dx} [\sec x] = \sec x \tan x dxd[secx]=secxtanx

在某些积分中,这种表达比 1 cos ⁡ x \frac{1}{\cos x} cosx1 更方便操作。


总结

  • sec x = 1 / cos x 是定义;
  • sec 是 secant 的缩写,源自几何中的“割线”;
  • 它是余弦函数的倒数,常用于三角函数的高级运算中。

很好,我们来详细解释 csc x(余割函数) 的含义,包括它的定义、几何意义和来源。


一、csc x 的定义

csc 是 cosecant(余割) 的缩写,定义如下:

csc ⁡ x = 1 sin ⁡ x \boxed{\csc x = \frac{1}{\sin x}} cscx=sinx1

即,csc x 是 sin x 的倒数


四、与其他三角函数的关系

函数倒数函数关系
sin xcsc x csc ⁡ x = 1 sin ⁡ x \csc x = \frac{1}{\sin x} cscx=sinx1
cos xsec x sec ⁡ x = 1 cos ⁡ x \sec x = \frac{1}{\cos x} secx=cosx1
tan xcot x cot ⁡ x = 1 tan ⁡ x \cot x = \frac{1}{\tan x} cotx=tanx1

五、csc x 在计算中的用途

虽然 csc x 在日常应用中用得不多,但在高等数学中,它的导数、积分等形式简洁:

例如:

d d x [ csc ⁡ x ] = − csc ⁡ x cot ⁡ x \frac{d}{dx}[\csc x] = -\csc x \cot x dxd[cscx]=cscxcotx


你问了三个非常经典的三角函数问题,我们逐个解释清楚:


1. tan ⁡ ( π 4 ) = 1 \tan\left(\frac{\pi}{4}\right) = 1 tan(4π)=1

这个是正确的,因为:

tan ⁡ ( π 4 ) = sin ⁡ ( π 4 ) cos ⁡ ( π 4 ) = 2 2 2 2 = 1 \tan\left(\frac{\pi}{4}\right) = \frac{\sin\left(\frac{\pi}{4}\right)}{\cos\left(\frac{\pi}{4}\right)} = \frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} = 1 tan(4π)=cos(4π)sin(4π)=22 22 =1


2. arctan ⁡ ( 1 ) = π 4 \arctan(1) = \frac{\pi}{4} arctan(1)=4π

解释:

  • arctan ⁡ ( x ) \arctan(x) arctan(x)反正切函数,即:

    arctan ⁡ ( x ) = y    ⟺    tan ⁡ ( y ) = x , y ∈ ( − π 2 , π 2 ) \arctan(x) = y \iff \tan(y) = x,\quad y \in \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) arctan(x)=ytan(y)=x,y(2π,2π)

  • 所以:

    arctan ⁡ ( 1 ) = π 4 \arctan(1) = \frac{\pi}{4} arctan(1)=4π


3. d d x tan ⁡ x = sec ⁡ 2 x \frac{d}{dx} \tan x = \sec^2 x dxdtanx=sec2x

这是 tan x 的导数,只要 x ≠ π 2 + n π x \neq \frac{\pi}{2} + n\pi x=2π+(因为在这些点处 tan x 不可导)。

推导思路(选学):

d d x tan ⁡ x = d d x ( sin ⁡ x cos ⁡ x ) = cos ⁡ x ⋅ cos ⁡ x + sin ⁡ x ⋅ sin ⁡ x cos ⁡ 2 x = cos ⁡ 2 x + sin ⁡ 2 x cos ⁡ 2 x = 1 cos ⁡ 2 x = sec ⁡ 2 x \frac{d}{dx} \tan x = \frac{d}{dx} \left( \frac{\sin x}{\cos x} \right) = \frac{\cos x \cdot \cos x + \sin x \cdot \sin x}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x dxdtanx=dxd(cosxsinx)=cos2xcosxcosx+sinxsinx=cos2xcos2x+sin2x=cos2x1=sec2x


✅ 最终结论整理:

表达式结果
tan ⁡ ( π 4 ) \tan\left(\frac{\pi}{4}\right) tan(4π)1
arctan ⁡ ( 1 ) \arctan(1) arctan(1) π 4 \frac{\pi}{4} 4π
d d x tan ⁡ x \frac{d}{dx} \tan x dxdtanx sec ⁡ 2 x \sec^2 x sec2x

如需图像或推导过程更详细版本,也可以继续问!

很好,来详细解释:


✅ 问题: d d x [ arctan ⁡ x ] = \frac{d}{dx}[\arctan x] = dxd[arctanx]= ?


📘 答案:

d d x [ arctan ⁡ x ] = 1 1 + x 2 (适用于所有实数  x ∈ R ) \boxed{\frac{d}{dx}[\arctan x] = \frac{1}{1 + x^2}} \quad \text{(适用于所有实数 } x \in \mathbb{R}) dxd[arctanx]=1+x21(适用于所有实数 xR)


📌 推导过程(用隐函数法):

设:

y = arctan ⁡ x ⇒ tan ⁡ y = x y = \arctan x \quad \Rightarrow \quad \tan y = x y=arctanxtany=x

两边对 x x x 求导:

d d x [ tan ⁡ y ] = d d x [ x ] \frac{d}{dx}[\tan y] = \frac{d}{dx}[x] dxd[tany]=dxd[x]

左边用链式法则:

sec ⁡ 2 y ⋅ d y d x = 1 ⇒ d y d x = 1 sec ⁡ 2 y \sec^2 y \cdot \frac{dy}{dx} = 1 \quad \Rightarrow \quad \frac{dy}{dx} = \frac{1}{\sec^2 y} sec2ydxdy=1dxdy=sec2y1

因为 tan ⁡ y = x \tan y = x tany=x,所以可以构造一个三角关系:

  • tan ⁡ y = 对边 邻边 = x 1 \tan y = \frac{\text{对边}}{\text{邻边}} = \frac{x}{1} tany=邻边对边=1x
  • 那么 sec ⁡ 2 y = 1 + tan ⁡ 2 y = 1 + x 2 \sec^2 y = 1 + \tan^2 y = 1 + x^2 sec2y=1+tan2y=1+x2

代入得:

d y d x = 1 1 + x 2 ⇒ d d x [ arctan ⁡ x ] = 1 1 + x 2 \frac{dy}{dx} = \frac{1}{1 + x^2} \Rightarrow \boxed{\frac{d}{dx}[\arctan x] = \frac{1}{1 + x^2}} dxdy=1+x21dxd[arctanx]=1+x21


📊 图像直观理解:

  • 函数 y = arctan ⁡ x y = \arctan x y=arctanx 的图像是一条“S”形曲线,左右水平渐近线分别是 y = − π 2 y = -\frac{\pi}{2} y=2π y = π 2 y = \frac{\pi}{2} y=2π
  • 其导数 1 1 + x 2 \frac{1}{1+x^2} 1+x21 表示在 x 轴上变化越远,斜率越趋近于 0。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值