近期,强化学习之父Richard Sutton在访谈中关于“大模型是死胡同”的观点在业界广泛传播。结合人工智能“教母”李飞飞指出的大模型“致命缺陷”,以及Palantir CEO将大模型视为“原料”的实用主义观点,本文将从人类智能体系架构的角度,系统解析三者在哲学层面的根本差异。并进一步追问:
在主流路径之外,是否存在另一种智能发展范式?
从“仿生”视角看人工智能核心架构
上一篇文章在笔者看来十分重要,部分内容是受到一些读者留言的启发,促使笔者研究了解李飞飞的世界模型,并深入思考人类智能、人工智能的结构体系和对应关系。
由于笔者非技术背景出身,且秉持当前阶段方法论比具体措施更重要的理念,因此技术实现的细节始终处在笔者个人能力和关注范畴外,这也使得相关的分析会因为欠缺实践基础而偏理想化。因此,希望广大读者们能够不吝指正,多多交流。
对人类智能与人工智能内在结构及对应关系的探索,本应是人工智能研究的初始命题与逻辑起点。但正如上一篇文章提到的,人工智能的发展始终在哲学思辨与工程实践的相互缠绕中螺旋式演进。我们比较容易陷在其中一端无暇他顾。
在笔者看来,与以航天产业化为标志的大航天时代相比,人工智能的演进同样是一个关乎人类整体命运的宏大课题,甚至因其直接触及智能本质与认知边界而更具深层意义。本源性的哲学思考为工程实践指明根本方向,而工程实践中的突破与困境,又不断为哲学体系带来新的挑战与反思。
因此,回归哲学层面的底层思考,既是探索适合我们的自主技术范式的必然要求,也是实现人工智能与人类文明深度融合的必要前提。这种回归不是对技术路径的否定,而是为了在更根本的层面上构建技术与价值、创新与伦理相统一的智能未来。
本质上,人工智能是最高层级的“仿生学”,建立在对人类意识存在与客观世界关系的深层认识基础上。而“人何以为人”这个跨越几千年文明史的根本追问,是所有哲学体系得以建立的共同基石。
在笔者看来,与人工智能相关的认知哲学,其核心可以解构为三个基本层面:
一是智能生成的客观基础:承载智能的生理结构,主要指人体与感知、意识相关的官能系统及其内在体系;
二是智能涌现的动态过程:学习、知识、实践是如何通过交互、内化与反思逐步形成的;
三是智能实践的最终指向:智能在现实世界中从分析、规划到决策、行动的完整闭环。
上一篇文章已经基于中国传统哲学体系里“眼耳鼻舌身”与“意”之间的关系分析过,人工智能体系同样由作为环境交互接口的功能层(传感、执行、人机交互指令界面等)与作为认知决策核心的中枢层构成。
大模型相当于缺少了与环境直接交互的视听数据接口及其自主识别能力,是一个没有五感的与世隔绝的“脑”(缺了“眼耳鼻舌身”的抽象的“意”)。
李飞飞的观点——LLM无感
尽管李飞飞是基于对自然界的观察形成其世界模型的探索方向的,但她对于大模型缺陷的判断与上述逻辑类似,认为语言是纯粹生成的、非自然的,大模型没有对自然界的感知能力。
李飞飞的观点本质上代表了对于“智能”的先天性,或者说更泛在的“智能”存在的理解。比如动物所拥有的视听和基于视听作出反应的能力,人类幼崽与生俱来的自然识别和反应能力——这些都与语言无关。
从她对空间智能的描述也能看出其认为的智能是“感知、决策与执行紧密结合”的观点,如上图她在社交媒体上的帖文所言:
空间智能是人工智能拼图中的关键一环。这是我2024年在TED的演讲,讲述从进化到人工智能的旅程,探讨我们如何构建空间智能。“视觉转化为洞察;观看演变为理解;理解催生了行动。这一切孕育了智能。”
Richard Sutton——
LLM只是单纯在模仿人类语言承载的已有知识
强化学习之父Richard Sutton对于大模型的批判其实与李飞飞是一致的,都源于语言的“非泛在性”。至于到底大模型是不是如他所说的“死胡同”,取决于大模型是否正确模拟了人类认知的形成过程,这就涉及到人类成长最重要的一环——学习和实践的关系。这也是哲学体系里一个很重要的内容。
中国传统哲学对于人类学习的论述极为丰富,比如儒家学思结合、知行合一的学习观念,道家区分知识积累(外在认知)与智慧领悟(内在体悟)的不同路径、强调“庖丁解牛”式的实践智慧,墨家“本之-原之-用之”的知识验证体系,禅宗“顿悟”式的直觉认知范式……
近现代起源于德国马导师、辗转传入中国并发扬光大的哲学成果自然更不必说——《实践论》,其实已经把认识和实践的关系说得再通透不过了。
我们再来看人工智能的核心——机器学习在技术上是怎么做的。
按照机器通过数据进行学习的不同模式,机器学习被分为如下几种类型:
-
监督学习
监督学习是通过已标注的“训练数据”(输入-输出对)来学习从输入到输出的映射关系,也称为监督训练或有教师学习。如同老师在给你看了无数张标有动物类别的图片后,让你去识别一张新图片中的动物属于哪个类别。
主要应用:分类(如垃圾邮件识别)、回归(如房价预测)。
优势是在数据充足且标注准确的情况下,能在许多预测任务中达到较高精度;由于目标明确,效果易于评估。其局限则是依赖对大量高质量、已标注数据的获取,成本高、周期长;并且模型泛化能力受训练数据分布限制,无法识别未知类别或自主发现潜在模式。
-
无监督学习
无监督学习的核心思想是模型从无标注的数据中自行发现内在结构、模式或分布。
主要应用:聚类(如客户分群)、降维(如数据可视化)、关联分析(如购物篮推荐)。
优势是数据成本低(无需标注),能够发现一些人类难以察觉的数据内在结构,识别新类别或新关系。但其预测结果缺乏验证机制,效果难以评估,需要领域专家解释后才能转化为有意义的业务知识;且计算复杂度高,对算力消耗较大。
-
半监督学习
介于监督学习和无监督学习之间,同时使用少量标注数据和大量无标注数据进行训练,旨在降低对标注数据的依赖。
主要应用:与监督学习类似,主要用于分类和回归,尤其适用标注资源有限的场景。
半监督学习的优势是能够以较低成本达到接近纯监督学习的性能,更适合真实世界中标注稀缺的环境。但其有效性依赖于数据的“聚类假设”和“流形假设”,如果无标注数据与标注数据的分布差异大或噪声较多,可能损害模型性能。
强化学习
强化学习允许智能体在与环境的交互中通过试错来学习最优策略。就好比训练动物时,通过奖励(正反馈)与惩罚(负反馈)引导其形成行为策略。
主要应用:游戏AI(如AlphaGo)、机器人控制、自动驾驶、资源调度。
强化学习非常适合处理那些需要连续做出一系列决策才能达成最终目标的任务,可在仿真环境中进行大规模无风险训练。但训练过程缓慢且不稳定,对算力与数据交互量需求大;同时奖励函数的设计极具挑战性,环境泛化能力常常受限于训练条件。
强化学习之父Richard Sutton在批评“大模型是死胡同”的访谈(《强化学习之父Richard Sutton最新采访:LLM是死胡同》)中,系统阐述了他对智能本质的理解。他以“体验-行动-感知-奖励”这个似乎颇具功利色彩的信息流来概括生命活动的基本循环,并以此作为智能的定义基础。
由于奖励信号通常与具体任务强绑定,Sutton理念下的学习模式呈现出鲜明的“乐高”特性:AI在众多特定目标环境中,逐步形成可复用、可组合的智能能力模块,最终编织成一个庞大的人工智能“能力网络”,为具体模型实例提供基础支撑。
“乐高”之外,是否还应该有“榫卯”?——机器学习路径的另一种可能性
笔者认为,基于人类认知哲学的不同范式,机器学习应该存在两种不同的路径取向:一是设置一个标准化的学习框架(模板化的验证测试),二是模仿人类认知世界的内在机理。前者从外部框架出发进行拆解,往往形成的是“乐高”式的拼接架构;而后者从认知内核出发,通过类似于“奇经八脉”的有机连接遍历整个系统,将体现出更强的体系性与生命力。
当前人工智能的主流叙事逻辑,以及计算机科学的工程哲学是完全“乐高”式的——强调模块化、拼接与组合。但如果我们回到“仿生”人类智能这一根本课题上,一种更具体系性的叙事逻辑可能终将展现它的威力。
这一点可以从“乐高”与“榫卯”这两种代表性结构的差异中得以窥见:
-
乐高的密码在于局部拆解。它以标准化接口实现无限组合,其复杂性往往体现在元件数量与堆叠规模。就像《我的世界》这类游戏,即便孩童也能轻松上手,入门较为简单。
-
榫卯的密码在于体系化构建。它通过精密的咬合关系形成一体化连接,其极致成就——比如不费一钉一铆而屹立数百年的天坛祈年殿——展现的是内在结构的完整性与自支撑力。但在中国传统文化式微的今天,其复现难度极高。
乐高的优势在于易用性与可扩展性,而榫卯则强调整体关系中的稳固与和谐。
由此,我们或许可以推断:在Sutton所倡导的、以“奖励-环境交互”为核心的强化学习路径之外,还存在一种更为复杂、也更贴近真实学习内在机理的模式。它可能不那么依赖外部奖励的拼接,而更强调智能体内部认知结构的自主生成与有机协同。
这一路径的深层灵感,或许正蕴藏在中国传统哲学体系中。
比如道家:
-
万物“负阴而抱阳”的对立统一与互根性,揭示了系统内部要素间“你中有我、我中有你”的有机联系;
-
“反者道之动”的命题,指出了事物向对立面转化、在动态平衡中演进的根本动力;
-
“一生二,二生三,三生万物”的生成逻辑,则阐明了从简单本源到无限复杂世界的层级涌现与泛化机制。
再比如“群经之首,大道之源”——易经更是在数理结构与象征体系中,将这种对世界变易规律的把握推向了极致。
这些思想并非孤立的名言断句,而是各有其完整的哲学理论与实践工程体系,共同汇聚成一种从本源内核出发,理解和把握世界复杂性的根本认知框架——既是世界观,也是方法论。
当人工智能发展超越单纯的技术范畴,进入“社会化”与“文明化”的宏大课题时,我们迫切需要跨越当前“乐高”式机械拼接范式的视野局限,致力于构建一种具备内在关联、自主驱动力与无限生成能力的“榫卯”式智能体系。这不仅是一次技术路径的转换,更是人工智能从“专用工具”迈向“通用智能”进程中一次根本性的哲学转向。
也许有人会说:Big胆!竟敢对超级大佬说三道四。但人类学习不就是这样吗?没有对权威的突破性思考,哪来那么多创新发展。在AI+的起步阶段,我们也应该充分探索多种路径的可能性,而非过早束缚在单一范式框架内。
更何况,当前人工智能领域的外部权威,对于蕴藏在中国传统哲学中的认知智慧缺乏深切体会。而这,正是浸润于中华文化语境中的我们,所独有的优势与历史机遇。
机器学习的另一种实现逻辑——从“数据驱动”到“学习驱动”
当我们将机器模拟人类学习的核心,聚焦于“认知”与“实践”的辩证关系时,数据便被赋予了双重角色:它既是人类“已知”知识体系的表征,也是智能体进行“新实践”的环境载体。
-
当训练数据由人工严格限定输入-输出关系、且完全源自人类既有实践时(例如基于真实路况的自动驾驶数据),机器的核心任务是模仿与继承——学习人类已有的知识经验与决策模式。
-
当机器通过与环境的自主交互进行学习,或数据不再依赖人为标注时,重点便转向探索与超越——旨在突破人类既有认知的边界,发现潜在的新知识与新策略。
正如Sutton所指出的,前一种范式的能力上限,在理论上将是整个互联网所承载的人类知识总和。终有一日,机器能够完成对人类社会全部知识积累的遍历与掌握。届时,如何突破人类智慧的固有框架,便成为一个全新的根本性课题。因此,模拟人类智能的形成过程本身——而非仅仅其产出结果——将成为人工智能向前发展的关键核心。
到那时,我们今天所依赖的“数据驱动”范式,或许将升维至一个更高阶的形态——“学习驱动”。这正如哲学思想从纯粹的经验论或唯理论,最终走向唯物辩证法一样。
Alex Karp——实用主义立场的大模型“原料”观
相较于出身学术界的李飞飞与Sutton,来自商业一线的Palantir CEO Alex Karp展现出更为鲜明的实用主义取向。
他认为大模型不具备理解企业复杂业务逻辑、执行精确预测或与现实世界进行可靠交互的能力,就像未被加工的原油一样只是一种强大的“原材料”。由此论证Palantir的“本体”数据层及其人机协同架构的必要性。
这与李飞飞和Sutton对模型根本缺陷的批判有着本质不同。Karp并不质疑大模型作为基础能力的合理性,而是着眼于在承认其价值的前提下,如何通过系统工程方法,将其高效、可靠地规模化应用于真实的商业环境之中。
我们在上一篇文章系统阐述过“本体”的弊端,尤其是Palantir试图用一个由人工预先设定、高度结构化的静态规则网络去封装一个永恒流动、持续演化的真实世界。这一思路背后,折射出美国军工复合体一脉相承的“控制”基因。
而在今年Palantir AIPCon大会上,Karp那段看似矛盾的演讲中,我们仍可清晰辨识其思想底层深厚的“精英主义”逻辑:
Palantir 的文化核心是彻底的精英主义和对个人能动性的信仰。公司坚信,一个看似疯狂的初始想法,只要有一群“虽然极度烦人,但能力顶尖”的人才去不懈奋斗,就能变为现实。他风趣地提到,顶尖的才能与“烦人”的特质之间可能存在某种强相关性。在这种文化中,个体的出身、背景、父母的职业等一切外在标签都被彻底剥离,唯一的评判标准是其创造价值的能力。Karp 以他在欧洲,特别是德国的生活经历作为对比,指出欧洲深厚的知识文化传统之下,社会阶层固化的现象依然显著,一个人的最终成就很大程度上仍受其出身影响。而硅谷,尤其是像 Palantir 这样的公司,则为那些纯粹依靠才华和奋斗的人提供了打破天花板的可能。
小智58,公众号:智见AI视界Palantir CEO AIPCon主旨演讲:破除硅谷大模型迷思,揭示AI革命的真正前景
所以说,Palantir的“本体”远不止一个单纯的技术架构,其本质是其哲学立场的物质化表达。它基于一个核心的、源自西方现代性的迷思:世界在根本上是可以被完整预设、结构化并最终控制的——早期由“神”主导,现代则转移至被神化的“精英理性”。
这与指向下一代AI的哲学路径——无论是倡导“与环境共生” 的具身智能,还是道家思想中“道法自然”的生成论——形成了根本性的对立。也因此,在学习研究Palantir的过程中,我们不得不再次强调建立在中国本土哲学体系基础上的另一种可能性,不仅存在,而且必要。
总结
李飞飞在批评大模型缺陷、提出其世界模型理念的过程中,实际上勾勒出了一个完整的“智能”体系架构——感知、行动与智能中枢的紧密耦合。这为理解智能的整体性提供了框架基础。
Sutton则进一步突破了大模型训练中由人主导的机器学习迷思,强调了自主交互(实践)作为学习发生的根本模式,并提出了以“奖励”为表征的朴素动力机制。值得注意的是,在“体验-行动-感知-奖励”这个看起来十分功利的框架之外,Sutton也提到了赋予AI以最基本的规则——价值观,这在一定程度上体现了从“内核”出发进行体系化构建的思维雏形。
而Palantir对大模型的所有应用与批判,均植根于其试图通过结构化“本体”来模拟并控制现实世界的根本理念。在哲学史上,“本体论”作为对世界本源的探索,经由马导师的批判与发展,在中国近现代思想史中结出了《实践论》这一重要成果。要真正从哲学层面理解Palantir的“本体”,就必须穿透这一理论演变历程,把握其最新的演进成果,而非机械复述Palantir的官方叙事。
正如本系列开篇所言:
你要了解AI,就不能只了解AI;
你要了解“本体”,就不能只重复Palantir抛给你的“本体”概念。
此外,从智能工程化的维度看,尽管Palantir的“本体”存在根本性缺陷,我们仍需审慎思考一个可能性:
Palantir凭借在特定领域闭环内的持续深耕与跨平台数据沉淀,是否可能逐步构建出一个足够通用的、事实性的知识图谱,从而在未来成为制约“人工智能+”创新生态的底层基础设施?
毕竟,夺取人工智能未来的制高点,不仅是哲学思想的交锋,也是工程实践上关于生态主导权与标准定义权的生死角逐。
【相关专题】
“一半天堂一半地狱”:人才富集与产业空心化,AI为什么也这么难?
汽车工业第四代生产范式,为什么没有率先出现在中国?(1)四个问题,读懂特斯拉超级工厂和第四代生产范式
汽车工业第四代生产范式,为什么没有率先出现在中国(2):智能制造的核心竞争逻辑,从上海超级工厂的特殊地位说起
汽车工业第四代生产范式,为什么没有率先出现在中国(3):为什么也没有诞生在德国?
汽车工业第四代生产范式,为什么没有率先出现在中国(4):美国“去工业化”与特斯拉崛起的悖论
汽车工业第四代生产范式,为什么没有率先出现在中国(5):工业强国的真正标准
从“互联网+”到“人工智能+”:云计算生态演进揭示AI应用破局之道
解密Palantir:AI+时代企业IT演进与“本体”变革的深度剖析
Palantir解密:从企业数字化能力构成说起,“本体”如何破解现代企业数据应用难题?
Palantir解密:从AI到AI Agent,为什么需要“本体”?有没有其他方案?
本文在网络公开资料研究基础上成文,限于个人认知,可能存在错漏,欢迎帮忙补充指正。