AGI的梦想再绚烂,大模型落地才是真功夫。
大模型之路,已经进入一个新阶段。从ChatGPT发布算起,国内公司“跑步进场”的大约半年里,大模型竞争的焦点已逐渐从跑马圈地到“落地肉搏”。首先是用户对大模型的认知发生了改变:从6月初起,“ChatGPT变笨了”的话题一度在社交媒体上引发讨论。用户在写作、绘画等AIGC领域的新鲜劲开始退去,当他们试图用ChatGPT解决实际问题时,往往难以得到满意的答案。
另一方面,基于医疗、金融、教育等垂直行业的大模型开始出现,更多人开始关注能够真正扎进行业、给企业带来生产力跃升的大模型产品。
当大模型竞争的重点从通用大模型转向行业大模型,又将产生什么样的变化?
通用大模型只能在通用属性强的场景中应用,在B端,技术还未完备的情况下,通用的大模型由于缺乏专有领域的知识,很难实际落进行业场景,产生生产力。不能帮助用户解决实际的问题——这是大模型的商业链路中,一个急需解决的巨大Bug。“大事答不了,小事不用答”,现时的通用大模型就处在这样一个不上不下的位置上。
而垂直大模型,也叫行业大模型,凭借实打实地“扎”进场景,了解企业的痛点的优势,作为后起之秀映入眼帘。据不完全统计,当前国内已发布超过80个大模型产品,对应不同行业、不同应用场景。究其背后,大模型和各行业结合背后最本质的逻辑是什么?
一是数据安全。提到国内AI市场的数据安全,就拿AI企业发布的大模型为例。
以实在智能为例,作为国内通过自研AGl大模型+超自动化技术,领跑人机协同时代的人工智能科技公司,近期发布了自研垂直领域大语言模型TARS(塔斯),在保持垂直行业大模型的强落地应用性的基础上,也展现了模型极大的安全性和对数据的高度敏感性。这是由于实在TARS大模型中叠加了多项自然语言处理前沿技术,如模型的不当言论判别,进一步增强生成效果和安全性。此外,作为高新技术企业,深耕信创国产自研领域,实在TARS大模型全面支持私有化部署,用户可完全自主掌控数据和模型,确保内部敏感数据的安全性,并可根据业务需求进行定制化开发。
二是想要扎到行业,必须创造价值。
顶层的设计往往充满着不确定性,而市场的判断却是朴素而直接的:谁能给我带来收益和更多的价值,谁就是于我有用的。
实在TARS大模型也将与实在RPA实现完美融合,乘着RPA产品落地各行各业的东风,找到了自己价值的“落脚点”:前者提供自然语言理解及逻辑知识的归纳泛化能力,后者基于实在智能自研的“智能屏幕语义理解技术(ISSUT)”,实现对一切屏幕上一切元素的自动化操作。通过二者的融合,提高数据处理和决策效率、增强风险预测和控制能力,赋能企业减少重复、繁琐的人工操作,成为越来越多的政府机构和企事业单位数字化转型的关键手段。
当科技的脚步踏入人工智能时代,一项技术创新带来的变革一定要深入千行百业,千行百业也正迎来巨大的想象空间。对于踏足大模型领域的大大小小企业来说,谁先在行业站稳第一只脚,谁就能更早迎接AI的下一个飞速发展期。