一. 递归
在函数内部,可以调用其它函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。
1.写一个求整数阶乘的函数
非递归方法:
def NotRecursion(x):
result=x
for each in range(1,x):
result *=each
return result
num = int(input("请输入一个正整数:"))
result = NotRecursion(num)
print("%d的阶乘是:%d" % (num,result))
递归方法:
def Recursion(x):
if x == 1:
return 1
else:
return x * Recursion(x-1)
num = int(input("请输入一个正整数:"))
result = Recursion(num)
print("%d的阶乘是:%d" % (num,result))
2.小结
使用递归函数的优点是逻辑简单清晰,缺点是过深的调用会导致栈溢出。
二. 递归范例:斐波那契数列
【度娘】斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”。
迭代方法实现:
def fab(n):
n1 = 1
n2 = 1
n3 = 1
if n < 1:
print("输入有误!")
return -1
while (n-2) > 0:
n3 = n2 + n1
n1 = n2
n2 = n3
n-=1
return n3
result = fab(20)
if result != -1:
print("共有%d对兔子诞生"%result)
递归方法实现:
def Rabbit(m):
if m < 1:
print("输入有误")
return -1
else:
if((m==1)or(m==2)):
result=1
else:
result=Rabbit(m-1)+Rabbit(m-2)
return result
result = Rabbit(20)
if result != -1:
print("共有%d对兔子诞生"%result)
三. 递归范例:汉诺塔
【度娘】汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。
大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
递归方法实现:
def hanoi(n,x,y,z):
if n==1:
print(x,"->",z)
else:
hanoi(n-1,x,z,y)#将前n-1个盘子从x移到y上
"注意参数的顺序"
print(x,"->",z)#将最底下的一个盘子从x移到z上
hanoi(n-1,y,x,z)#将y上的n-1个盘子移到z上
n = int(input("请输入层数:"))
hanoi(n,'X',"Y",'Z')