排序不等式(Rearrangement Inequality)又称排序原理,是数学上的一种不等式。它可以推导出很多有名的不等式,例如:算术几何平均不等式、柯西不等式、切比雪夫总和不等式。
简洁的来说就是两组数对应“顺序”相乘的和 > “乱序”相乘的和 > “逆序”相乘的和;
有了排序不等式这个强大的数学武器,我们再来看GCJ 2008 Round1A Problem A. Minimum Scalar Product这道题
题意:给两个向量 v1 = { x1 , x2 , x3 , x4 .... } , v2 = { y1 , y2 , y3 , y4 ...... }
允许任意交换 v1 和 v2 各自向量的分量顺序,
计算 v1,v2 内积 ( x1 * y1 + x2 * y2 .... )的最小值
思路: 分别求出这两个向量的逆序和顺序排列,随后再对应相乘即可得出结果
代码如下:
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
vector<int> v1;
vector<int> v2;
int n;
long long sum;
int main()
{
cin >> n;
for (int i = 0;i < n;i++)
{
int x = 0;
cin >> x;
v1.push_back(x);
}
for (int i = 0;i < n;i++)
{
int x = 0;
cin >> x;
v2.push_back(x);
}
sort(v1.begin(), v1.end());
sort(v2.rbegin(), v2.rend());
for (int i = 0;i < n;i++)
{
sum += v1[i] * v2[i];
}
cout << sum << endl;
return 0;
}