排序不等式 GCJ 2008 Round1A Problem A. Minimum Scalar Product

排序不等式(Rearrangement Inequality)又称排序原理,是数学上的一种不等式。它可以推导出很多有名的不等式,例如:算术几何平均不等式、柯西不等式切比雪夫总和不等式

简洁的来说就是两组数对应“顺序”相乘的和 > “乱序”相乘的和 > “逆序”相乘的和;

有了排序不等式这个强大的数学武器,我们再来看GCJ 2008 Round1A Problem A. Minimum Scalar Product这道题

题意:给两个向量 v1 = { x1 , x2 , x3 , x4 .... } , v2 = { y1 , y2 , y3 , y4 ...... }

允许任意交换 v1 和 v2 各自向量的分量顺序,

计算 v1,v2 内积 ( x1 * y1 + x2 * y2 .... )的最小值

思路: 分别求出这两个向量的逆序和顺序排列,随后再对应相乘即可得出结果

代码如下:

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

vector<int> v1;
vector<int> v2;
int n;
long long sum;
int main()
{
	cin >> n;
	for (int i = 0;i < n;i++)
	{
		int x = 0;
		cin >> x;
		v1.push_back(x);
	}
	for (int i = 0;i < n;i++)
	{
		int x = 0;
		cin >> x;
		v2.push_back(x);
	}
	sort(v1.begin(), v1.end());
	sort(v2.rbegin(), v2.rend());
	for (int i = 0;i < n;i++)
	{
		sum += v1[i] * v2[i];
	}
	cout << sum << endl;

	return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大嘤三喵军团

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值