hive指定数据切分格式--row format

本文详细介绍了在Hive中创建表时如何使用ROWFORMAT关键字来指定数据切分格式,包括字段、数组、键值对及行之间的不同分隔符设置,如FIELDSTERMINATEDBY、COLLECTIONITEMSTERMINATEDBY等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

创建表时需要指定数据切分格式,会用到ROW FORMAT关键字。

下面是java集合框架图,存入hive的数据就是集合中的某一种

所以在创建标的时候就可以指定分隔符:

  1. 第一个--<字段>,由[ , ]分割----------FIELDS TERMINATED BY ','
  2. 第二个是--<Array形式>,元素与元素之间由[ - ]分割----------COLLECTION ITEMS TERMINATED BY '-'
  3. 第三个是--<K-V形式>,每组K-V对内部由[ : ]分割,每组K-V对之间由[ - ]分割----------MAP KEYS TERMINATED BY ':'
  4. 每条数据之间由换行符分割(默认[ \n ]),如果是其它分割方式(比如[ ; ])----------LINES TERMINATED BY ';'

例如:

create table student (
id sno,
name string,
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
COLLECTION ITEMS TERMINATED BY '-'
MAP KEYS TERMINATED BY ':';

 

### 关于 Hive 的面试问题及答案 #### 1. Hive 中常见的压缩格式有哪些?各自的特点是什么? Hive 支持多种文件存储格式,每种格式都有其特点和适用场景。以下是几种常见格式的区别: - **TextFile**: 这是最简单的文本文件格式,默认情况下不支持分割,适合用于小型数据集或调试环境[^3]。 - **SequenceFile**: 是一种二进制键值对序列化文件格式,支持压缩且可被切分,适用于MapReduce作业中的中间输出结果保存。 - **RCFile (Record Columnar File)**: 结合了行式与列式的优点,在读取特定字段时效率较高;同时具备良好的压缩率和支持并行处理的能力。 - **ORC (Optimized Row Columnar)**: 继承和发展自 RCFile ,进一步增强了查询性能优化功能,比如跳过不必要的数据块扫描、内置索引机制等特性使得 ORC 成为了大数据量下高效分析的理想选择之一. ```sql -- 创建表使用不同类型的文件格式 CREATE TABLE example_textfile ( id INT, name STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE; CREATE TABLE example_sequencefile ( id INT, name STRING ) STORED AS SEQUENCEFILE; CREATE TABLE example_rcfile ( id INT, name STRING ) STORED AS RCFILE; CREATE TABLE example_orc ( id INT, name STRING ) STORED AS ORC; ``` #### 2. 如何提高 Hive 查询的速度? 一份关于 Hive 性能优化的资料指出,通过调整参数配置以及合理设计物理模型等方式可以显著提升查询速度。具体措施包括但不限于:适当增加 Map 和 Reduce 数目、启用本地模式执行简单任务、利用分区裁剪减少输入范围、采用合适的数据倾斜解决方案等等[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值