Cnn-rnn: A unified framework for multi-label image classification 在被引用文章中的相关叙述

本文综述了CNN与RNN在图像分类中的应用,包括Deep Convolutional Neural Networks和Recurrent Neural Networks的联合使用,探讨了如何利用RNN建模图像-标签和标签-标签的关系。同时,文中介绍了多种模型结构,如Neural Motifs、Learning to Diagnose等,这些模型在多标签预测中展示了不同的策略,如利用上下文信息、空间关系和语义规则。此外,文中还讨论了如何改进CNN-RNN结构,如通过添加Spatial Transformer层来提高对图像区域的注意力,以及使用Semantic Regularisation增强标签关系的学习。
摘要由CSDN通过智能技术生成

1.Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review

相应描述

  DCNN用于从图片中提取语义表述,而RNN用于图像-标签之间和标签-标签之间的关系进行建模。

2.Image captioning and visual question answering based on attributes and external knowledge

相应描述

  这种端到端的CNN-RNN方法忽略了图像到词的映射,这是前面详细介绍的许多图像描述系统中的一个重要步骤。CNN-RNN方法的优点是能够生成更广泛的标签,可以端到端地进行训练,并且在基准上优于以前的方法。然而,目前还不清楚其中中高级表示的影响是什么,特别是RNN语言模型可能在多大程度上起到了补偿作用。

论文模型结构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>