05

本文深入探讨了点击率预估的两种重要模型:Wide&Deep模型和GBDT+LR。Wide&Deep模型结合了记忆型的广义线性模型与泛化型的深度学习,而GBDT+LR则是将梯度提升树与逻辑回归相结合。通过理解这两种模型的原理和操作流程,你可以掌握如何在推荐系统中实现更精准的预测。此外,文中还提供了编程实践和课后思考题,助你深化理解。
摘要由CSDN通过智能技术生成

占坑orz
6 Wide&Deep
6.1 点击率预估简介
6.2 FM它不香吗
6.3 Wide & Deep模型的“记忆能力”与“泛化能力”
6.4 操作流程
6.5 代码实战
6.6 深度学习推荐系统的发展
6.7 课后思考

7 GBDT+LR
7.1 GBDT+LR简介
7.2 逻辑回归模型
7.3 GBDT模型
7.4 GBDT+LR模型
7.5 编程实践
7.6 课后思考
7.7 参考资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值