大数据----Spark中决策树模型Pipeline的建立 和 两种验证方法(完整版)

数据链接

一、数据预处理

1、加载数据
# 导入包
import os
import time
from pyspark.sql import SparkSession

# 实例化SparkSession对象,以本地模式是运行Spark程序
spark = SparkSession \
    .builder \
    .appName("PySpark_ML_Pipeline") \
    .master("local[4]")\
    .getOrCreate()


print spark
print spark.sparkContext
'''
<pyspark.sql.session.SparkSession object at 0x00000000066CB5C0>
<SparkContext master=local[4] appName=PySpark_ML_Pipeline>
'''
2、SparkSession读取CSV格式文件
help(spark.read.csv)
# 读取数据集,
raw_df = spark.read.csv('./datas/train.tsv', header='true', sep='\t',\
							 inferSchema='true')
# 显示条目数
print raw_df.count()
==>7395
raw_df.printSchema()

# 由于字段太多,选择某些字段值
raw_df.select('url', 'alchemy_category', 'alchemy_category_score', \
							'label').show(10)





3、清洗数据
# 定义函数转换 ?转换为 0
def replace_question_func(x):
    return '0' if x == '?' else x

# 注册函数
from  pyspark.sql.functions import udf
replace_question = udf(replace_question_func)



# col函数将 一个字符串转换为DataFrame中列, 获取对应DataFrame中此列的值
from pyspark.sql.functions import col

# 使用自定义的函数,转换数据
df = raw_df.select(['url', 'alchemy_category'] +\
			 [ replace_question(col(column)).cast('double')\
			 .alias(column) for column in raw_df.columns[4:]])


df.printSchema()

df.select('url', 'alchemy_category', 'alchemy_category_score', \
				'label').show(10)

这里写图片描述

# 将数据集分为 训练集和测试集
train_df, test_df = df.randomSplit([0.7, 0.3])

print train_df.cache().count()
print test_df.cache().count()
"""
5216
2179
"""

4、特征处理
1、alchemy_category
    类别特征数据转换
    第一特征转换器、StringIndexer
        将文字的类别特征 转换 数字
    第二特征转换器、OneHotEncoder
        将数值的 类别特征字段 转换为 多个字段的Vector
2、特征的组合
    第二特征转换器、VectorAssembler
        将多个特征整合到一起
4.1、StringIndexer

网址:http://spark.apache.org/docs/2.2.0/ml-features.html#stringindexer

# 导入模块
from pyspark.ml.feature import StringIndexer
help(StringIndexer)


# 创建StringIndexer实例对象
"""
    参数说明:
        inputCol -> 要转换的字段名称
        outputCol -> 转换后的字段名称
"""
categoryIndexer = StringIndexer(inputCol='alchemy_category',\
						 outputCol='alchemy_category_index')

print type(categoryIndexer)
"""
==><class 'pyspark.ml.feature.StringIndexer'>
"""

调用StringIndexer类中的 fit 方法,获取到转换器Transformer

categoryTransformer = categoryIndexer.fit(df)
print type(categoryTransformer)


# 使用 categoryTransformer 转换器 将所有的 train_df 进行转换
df1 = categoryTransformer.transform(train_df)

df1.select('alchemy_category', 'alchemy_category_index').show(10)
"""
+------------------+----------------------+
|  alchemy_category|alchemy_category_index|
+------------------+----------------------+
|                 ?|                   0.0|
|arts_entertainment|                   2.0|
|                 ?|                   0.0|
|          business|                   3.0|
|arts_entertainment|                   2.0|
|                 ?|                   0.0|
|                 ?|                   0.0|
|        recreation|                   1.0|
|          business|                   3.0|
|arts_entertainment|                   2.0|
+------------------+----------------------+
only showing top 10 rows
"""



df1.printSchema() #查看结构数据
4.2、OneHotEncoder
OneHotEncoder可以将一个数值的类别特征字段转换为多个字段的Vector向量
from pyspark.ml.feature import OneHotEncoder
# 创建 OneHotEncoder 实例对象
encoder = OneHotEncoder(inputCol='alchemy_category_index', 
                        outputCol='alchemy_category_index_vector')

print type(encoder)
"""
<class 'pyspark.ml.feature.OneHotEncoder'>
"""


df2 = encoder.transform(df1)

df2.printSchema()

df2.select('alchemy_category', 'alchemy_category_index',\
			 'alchemy_category_index_vector').show(10)

这里写图片描述

4.3、VectorAssembler

特征的组合
         ~~~~~~~~         第二特征转换器、VectorAssembler,将多个特征整合到一起

from pyspark.ml.feature import VectorAssembler
assembler_inputs = ['alchemy_category_index_vector'] \
					+ raw_df.columns[4:-1]
print assembler_inputs

"""
['alchemy_category_index_vector', 'alchemy_category_score', 
'avglinksize', 'commonlinkratio_1', 'commonlinkratio_2', 
'commonlinkratio_3', 'commonlinkratio_4', 'compression_ratio',
 'embed_ratio', 'framebased', 'frameTagRatio', 'hasDomainLink', 
'linkwordscore', 'news_front_page', 'non_markup_alphanum_characters', 
'numberOfLinks', 'numwords_in_url', 'parametrizedLinkRatio', 
'spelling_errors_ratio']
"""
######创建 VectorAssembler 实例对象,传递参数,指定合并哪些字段,输出的字段名称
assembler = VectorAssembler(inputCols=assembler_inputs, 
								outputCol='features')
df3 = assembler.transform(df2)

df3.printSchema()

"""
+--------------------+-----+
|            features|label|
+--------------------+-----+
|(35,[0,14,15,16,1...|  1.0|
|(35,[2,13,14,15,1...|  1.0|
|(35,[0,14,15,19,2...|  0.0|
|(35,[3,13,14,15,1...|  1.0|
|(35,[2,13,14,15,1...|  0.0|
+--------------------+-----+
only showing top 5 rows
"""

df3.select('features').take(1)
"""
[Row(features=SparseVector(35, 
{0: 1.0, 14: 2.1446, 15: 0.7969, 16: 0.3945, 17: 0.332, 
18: 0.3203, 19: 0.5022, 22: 0.028, 24: 0.1898, 25: 0.2354,
 26: 1.0, 27: 1.0, 28: 17.0, 30: 10588.0, 31: 256.0, 32: 
 5.0, 33: 0.3828, 34: 0.1368}))]
"""

二、建模

分类决策树DecisionTreeClassifier

from pyspark.ml.classification import DecisionTreeClassifier

# 使用决策树分类算法
dtc = DecisionTreeClassifier(featuresCol='features', labelCol='label',
                            impurity='gini', maxDepth=5, maxBins=32)

# 将 训练数据 应用到 算法
dtc_model = dtc.fit(df3)

# 使用模型预测
df4 = dtc_model.transform(df3)
df4.select('label', 'prediction', 
				'rawPrediction', 'probability')
				.show(20, truncate=False)

labelpredictionrawPredictionprobability
1.01.0[909.0,1104.0][0.45156482861400893,0.5484351713859911]
1.01.0[909.0,1104.0][0.45156482861400893,0.5484351713859911]
0.00.0[38.0,1.0][0.9743589743589743,0.02564102564102564]
1.01.0[27.0,177.0][0.1323529411764706,0.8676470588235294]
0.00.0[95.0,28.0][0.7723577235772358,0.22764227642276422]
1.01.0[909.0,1104.0][0.45156482861400893,0.5484351713859911]
1.01.0[909.0,1104.0][0.45156482861400893,0.5484351713859911]
1.00.0[144.0,95.0][0.602510460251046,0.39748953974895396]
0.00.0[363.0,146.0][0.7131630648330058,0.2868369351669941]
0.00.0[86.0,23.0][0.7889908256880734,0.21100917431192662]
0.00.0[144.0,95.0][0.602510460251046,0.39748953974895396]
0.00.0[144.0,95.0][0.602510460251046,0.39748953974895396]
0.00.0[43.0,1.0][0.9772727272727273,0.022727272727272728]
1.01.0[909.0,1104.0][0.45156482861400893,0.5484351713859911]
1.01.0[909.0,1104.0][0.45156482861400893,0.5484351713859911]
1.01.0[27.0,177.0][0.1323529411764706,0.8676470588235294]
1.01.0[129.0,417.0][0.23626373626373626,0.7637362637362637]
1.01.0[909.0,1104.0][0.45156482861400893,0.5484351713859911]
0.01.0[909.0,1104.0][0.45156482861400893,0.5484351713859911]
1.01.0[909.0,1104.0][0.45156482861400893,0.5484351713859911]

only showing top 20 rows

三、评估(ROC曲线)

from pyspark.ml.evaluation import BinaryClassificationEvaluator
# 创建 实例对象, 传递参数值
evaluator = BinaryClassificationEvaluator(labelCol='label',
		 rawPredictionCol='rawPrediction')
# 计算指标  metricName="areaUnderROC"
auc = evaluator.evaluate(df4)
print auc
"""
0.6087142511
"""
总结上述开发流程:
    1、从原始数据 提取特征数据
    2、特征数据应用到算法,得到模型
    3、使用模型预测数据
    4、评估模型

Pipeline:
    相当于一个“算法” -> 模型学习器
    包含两部分内容;
        -a. Estimator 模型学习器
            fit()
        -b. transformers 转换器
            transformer()
pipeline = Pipeline(Stages(.....))

pipeline.fit().....
model.transfor().....

四、打包(ML Pipeline)

Step 1. 创建流程中 转换器和 模型学习器
# 1. 导入全部需要 模块
from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, OneHotEncoder, VectorAssembler
from pyspark.ml.classification import DecisionTreeClassifier
# a. StringIndexer
string_indexer = StringIndexer(inputCol='alchemy_category',\
					 outputCol='alchemy_category_index')

# b. OneHotEncoding
one_hot_encoder = OneHotEncoder(inputCol='alchemy_category_index',\
					 outputCol='alchemy_category_index_vector')

# c. VectorAessmbler
assembler_inputs = ['alchemy_category_index_vector'] \
						+ raw_df.columns[4:-1]
vector_assembler = VectorAssembler(inputCols=assembler_inputs,\
						 outputCol='features')


# d. DecisionTreeClassifier 模型学习器
dt = DecisionTreeClassifier(featuresCol='features', labelCol='label',\
                            impurity='gini', maxDepth=5, maxBins=32)
Step 2. 创建Pipeline实例对象
# 按照数据处理顺序
pipeline = Pipeline(stages=[string_indexer,
			 one_hot_encoder, vector_assembler, dt])
pipeline.getStages()

"""
[StringIndexer_43e8b50676a58dad4d05,
 OneHotEncoder_4bf2a31a6b4b12aebd78,
 VectorAssembler_4429bf16ed1cc6c14207,
 DecisionTreeClassifier_451682088ef8fcaa79ae]
 """
step3. Pipeline 数据处理与训练模型
# 调用fit方法学,
pipleline_model = pipeline.fit(train_df)

type(pipleline_model)   #pyspark.ml.pipeline.PipelineModel
pipleline_model.stages[3]
Step 4. PipelineModel模型预测
predict_df = pipleline_model.transform(test_df)

step5、PipelineModel模型保存于加载
# 保存 模型
pipleline_model.save('./datas/dtc-model')
step6、调用
# 加载模型
from pyspark.ml.pipeline import PipelineModel

load_pipeline_model = PipelineModel.load('./datas/dtc-model')
load_pipeline_model.stages[3]


# 预测
load_pipeline_model.transform(test_df) \
    .select('label', 'prediction', 'rawPrediction',\
     'probability').show(20, truncate=False)
labelpredictionrawPredictionprobability
0.00.0[361.0,300.0][0.546142208774584,0.45385779122541603]
1.00.0[144.0,95.0][0.602510460251046,0.39748953974895396]
0.01.0[0.0,8.0][0.0,1.0]
1.01.0[129.0,417.0][0.23626373626373626,0.7637362637362637]
0.00.0[363.0,146.0][0.7131630648330058,0.2868369351669941]
0.00.0[363.0,146.0][0.7131630648330058,0.2868369351669941]
1.01.0[909.0,1104.0][0.45156482861400893,0.5484351713859911]
1.01.0[129.0,417.0][0.23626373626373626,0.7637362637362637]
1.01.0[27.0,177.0][0.1323529411764706,0.8676470588235294]
1.01.0[27.0,177.0][0.1323529411764706,0.8676470588235294]
1.01.0[27.0,177.0][0.1323529411764706,0.8676470588235294]
1.01.0[27.0,177.0][0.1323529411764706,0.8676470588235294]
1.01.0[27.0,177.0][0.1323529411764706,0.8676470588235294]
1.01.0[909.0,1104.0][0.45156482861400893,0.5484351713859911]
0.00.0[363.0,146.0][0.7131630648330058,0.2868369351669941]
1.01.0[909.0,1104.0][0.45156482861400893,0.5484351713859911]
1.01.0[909.0,1104.0][0.45156482861400893,0.5484351713859911]
1.01.0[909.0,1104.0][0.45156482861400893,0.5484351713859911]
1.00.0[361.0,300.0][0.546142208774584,0.45385779122541603]
0.00.0[86.0,23.0][0.7889908256880734,0.21100917431192662]

only showing top 20 rows

五、验证选择最优模型

5.1、创建 TrainValidationSplit 实例对象

(训练检验分离选择最优)
导入模块

from pyspark.ml.tuning import TrainValidationSplit, ParamGridBuilder

构建一个 决策树分类算法 网格参数

"""
    调整三个参数:
        -1. 不纯度度量
        -2. 最多深度
        -3. 最大分支数
"""
param_grid = ParamGridBuilder() \
    .addGrid(dt.impurity, ['gini', 'entropy']) \
    .addGrid(dt.maxDepth, [5, 10, 20]) \
    .addGrid(dt.maxBins, [8, 16, 32]) \
    .build()
    
print type(param_grid)
for param in param_grid:
    print param

针对二分类创建模型评估器

binary_class_evaluator = BinaryClassificationEvaluator(labelCol='label',\
                                rawPredictionCol='rawPrediction')


创建 TrainValidationSplit 实例对象

"""
    __init__(self, estimator=None, estimatorParamMaps=None, evaluator=None, trainRatio=0.75,  seed=None)
    参数解释:
        estimator:
            模型学习器,针对哪个算法进行调整超参数,这里是DT
        estimatorParamMaps:
            算法调整的参数组合
        evaluator:
            评估模型的评估器,比如二分类的话,使用auc面积
        trainRatio:
            训练集与验证集 所占的比例,此处的值表示的是 训练集比例
"""

train_validataion_split = TrainValidationSplit(estimator=dt,
				 evaluator=binary_class_evaluator, 
	              estimatorParamMaps=param_grid, trainRatio=0.8)

type(train_validataion_split)
#pyspark.ml.tuning.TrainValidationSplit

建立新的Pipeline实例对象

#使用 train_validataion_split 代替 原先 dt 
tvs_pipeline = Pipeline(stages=[string_indexer, \
								one_hot_encoder, vector_assembler, \
                                train_validataion_split])
# tvs_pipeline 进行数据处理、模型训练(找到最佳模型)
tvs_pipeline_model = tvs_pipeline.fit(train_df)

best_model = tvs_pipeline_model.stages[3].bestModel
"""
DecisionTreeClassificationModel (uid=DecisionTreeClassifier_\
451682088ef8fcaa79ae) of depth 20 with 1851 nodes
"""

评估最佳模型

predictions_df = tvs_pipeline_model.transform(test_df)

model_auc = binary_class_evaluator.evaluate(predictions_df)
print model_auc

0.649609702764
5.1、Cross-Validation交叉验证
"""
     __init__(self, estimator=None, estimatorParamMaps=None, \
				evaluator=None, numFolds=3, seed=None)
    假设 K-Fold的CrossValidation交叉验证  K = 3,将数据分为3个部分:
        1、A + B作为训练,C作为验证
        2、B + C作为训练,A作为验证
        3、A + C最为训练,B作为验证

"""


# 导入模块
from pyspark.ml.tuning import CrossValidator
# 构建 CrossValidator实例对象,设置相关参数
cross_validator = CrossValidator(estimator=dt, \
								evaluator=binary_class_evaluator,\
                                estimatorParamMaps=param_grid, numFolds=3)

# 创建Pipeline
cv_pipeline = Pipeline(stages=[string_indexer, one_hot_encoder, \
								vector_assembler, cross_validator])

使用 cv_pipeline 进行训练与验证(交叉)

cv_pipeline_model = cv_pipeline.fit(train_df)

查看最佳模型

best_model = cv_pipeline_model.stages[3].bestModel
"""
DecisionTreeClassificationModel (uid=DecisionTreeClassifier_ \
451682088ef8fcaa79ae) of depth 10 with 527 nodes
"""

使用测试集评估最佳模型

cv_predictions = cv_pipeline_model.transform(test_df)
cv_model_auc =  binary_class_evaluator.evaluate(cv_predictions)
print cv_model_auc

六、提升:随即森林(RF算法)

# 导入随机森林分类算法模块
from pyspark.ml.classification import RandomForestClassifier

# 创建RFC实例对象
rfc = RandomForestClassifier(labelCol='label', \
							featuresCol='features',\
							 numTrees=10, \
							 featureSubsetStrategy="auto",\
							 maxDepth=5, \
							 maxBins=32, \
							 impurity="gini")


# 创建Pipeline实例对象
rfc_pipeline = Pipeline(stages=[string_indexer, one_hot_encoder, \
						 vector_assembler, rfc])


# 使用训练数据训练模型
rfc_pipeline_model = rfc_pipeline.fit(train_df)


# 预测
rfc_predictions = rfc_pipeline_model.transform(test_df)

rfc_model_auc =  binary_class_evaluator.evaluate(rfc_predictions)
print rfc_model_auc
"""
0.716242043615
"""
  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值