【Java高级数据结构】二叉搜索树

二叉搜索树是一种特殊二叉树,每个节点的关键码唯一且左子树节点关键码小于根节点,右子树节点关键码大于根节点。文章详细介绍了非递归查询、递归查询、中序遍历、插入数据、删除数据的操作,并阐述了如何判断一个二叉树是否为BST树。
摘要由CSDN通过智能技术生成

二叉搜索树

又称BST树、二叉排序树。二叉搜索树或者是一颗空树,或者是具有下列性质的二叉树:

  • 1、每一个节点都有一个作为搜索依据的关键码(key),所有节点的关键码互不相同。
  • 2、左子树(如果存在)上所有节点的关键码都小于根节点的关键码。
  • 3、右子树(如果存在)上所有节点的关键码都大于根节点的关键码。
  • 4、左子树和右子树也是二叉搜索树

在这里插入图片描述

总结:如果对一颗二叉搜索树进行中序遍历,可以按从小到大的顺序,将各个关键码排列起来,所以也称二叉搜索树为二叉排序树。

结构设计:

class BSTNode{
   
    private BSTNode leftChild;
    private BSTNode parent;
    private BSTNode rightChild;
    private int data;
    public BSTNode(){
   
        leftChild = null;
        parent = null;
        rightChild = null;
        data = 0;
    }
    public BSTNode(int data){
   
        leftChild = null;
        parent = null;
        rightChild = null;
        this.data = data;
    }
    public BSTNode(int data,BSTNode parent){
   
        leftChild = null;
        this.parent = parent;
        rightChild = null;
        this.data = data;
    }
    public BSTNode(int data,BSTNode parent,BSTNode leftChild,BSTNode rightChild){
   
        this.leftChild = leftChild;
        this.parent = parent;
        this.rightChild = rightChild;
        this.data = data;
    }
}
private BSTNode head; //指向根节点
private int curSize; //记录有效个数
public BSTTree(){
   
    curSize = 0;
    head = new BSTNode();
}
BST树的相关操作
1、非递归查询
/**
 * 非递归形式寻找元素
 * @param value
 * @return
 */
public BSTNode FindValue(int value){
   
    BSTNode node = head.parent; //root
    while (node != null && node.data != value){
   
        node = value < node.data ? node.leftChild : node.rightChild;
    }
    return node;
}
2、递归查询

在二叉搜索树上进行搜索,是一个从根节点开始,沿某一个分支逐层向下进行比较判等的过程。它可以是一个递归的过程。

假设想要在二叉搜索树中搜索关键码为value的元素,搜索过程从根节点开始。如果根指针为null,则搜索失败;否则用给定值value与根节点的关键码进行比较ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值