2021年1月23日 经典动态规划 剪绳子

题目描述

给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1,m<=n),每段绳子的长度记为k[1],…,k[m]。请问k[1]x…xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

因为我只会用递归
所以一开始还是用递归写了一个demo
可惜我不知道什么时候该将末尾的数字剔除
所以最终不了了之

然后学习了各路大佬的动态规划思想
动态规划求解问题的四个特征:
①求一个问题的最优解;
②整体的问题的最优解是依赖于各个子问题的最优解;
③小问题之间还有相互重叠的更小的子问题;
④从上往下分析问题,从下往上求解问题
参考代码:

public class Solution {
    public int cutRope(int n) {
       // n<=3的情况,m>1必须要分段,例如:3必须分成1、2;1、1、1 ,n=3最大分段乘积是2,
        if(n==2)
            return 1;
        if(n==3)
            return 2;
        int[] dp = new int[n+1];
        /*
        下面3行是n>=4的情况,跟n<=3不同,4可以分很多段,比如分成1、3,
        这里的3可以不需要再分了,因为3分段最大才2,不分就是3。记录最大的。
         */
        dp[1]=1;
        dp[2]=2;
        dp[3]=3;
 
        for (int i = 4; i <= n; i++) {
            int res=0;//记录最大的
            for (int j = 1; j <=i/2 ; j++) {
                res=Math.max(res,dp[j]*dp[i-j]);//这里需要是两个dp值的乘积,而不是我之前想的j*dp[i-j]
            }
            dp[i]=res;
        }
        return dp[n];
    }
}

代码简洁

这里主要注意的问题是:
1、必须要剪,不能不剪
2、状态转移公式
res=Math.max(res,dp[j]*dp[i-j]);
这里需要注意
dp[1] 代表的是 剩余绳子长度为1 时,各种剪法的最大的乘积(这里实际只有一种结果,就是1)
dp[2] 代表的是 剩余绳子度为2 时,各种剪法的最大的乘积(这里实际上只有一种剪法,结果为2)
dp[3] 代表的是 剩余绳子长度为3 时,各种剪法的最大的乘积(3)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值