2020年10月24日 矩阵覆盖问题

题目描述

我们可以用2乘1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2乘1的小矩形无重叠地覆盖一个2乘n的大矩形,总共有多少种方法?

比如n=3时,2乘3的矩形块有3种覆盖方法:
在这里插入图片描述

思路:

没有明确方法的时候,最好的方法就是递推找规律

  • n = 1 的时候

    只能横着覆盖,一种

  • n = 2 的时候

    可以横着和竖着覆盖,两种

  • n = 3 的时候

    第三级横着覆盖,用了一级,剩下 n = 2,有两种覆盖方法
    第三季竖着覆盖,用了两级,剩下 n = 1,有一种覆盖方法
    总共有 3 种

  • n = 4 的时候

    第 4 级横着覆盖,用了一级,剩下 n = 3,有三种覆盖方法
    第 4 级竖着覆盖,用了两级,剩下 n = 2,有两种覆盖方法
    总共有 5 种方法

  • n = n 的时候

    第 n 级横着覆盖,用了一级,剩下 n = n - 1,所以关注第 n - 1 种有几种覆盖方法
    第 n 级竖着覆盖,用了两级,剩下 n = n - 2,所以关注第 n - 2 种有几种覆盖方法
    总和为两种情况的总和

  • 从 n = 1 到 n = 4 的示意图如下:

  • 在这里插入图片描述

所以回答上面的问题,涂掉最后一级矩阵的时候,可以选择使用横向完成,也可以使用竖向完成,横向涂剩下 n - 1 阶,竖向涂剩下 n - 2 阶

关注 n - 1 与 n - 2 时的涂法有几种,这就是斐波那契数列

public class Solution {
    public int RectCover(int target) {
        if(target<=2){
            return target;
        }
        int total1 = 1;
        int total2 = 2;
        int total = 0;
        for(int i = 3; i<=target;i++){
            total = total1 +total2;
            total1 =total2;
            total2 =total;
        }
        return total;
    }
}
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页