[CSP-S 2021] 括号序列

[CSP-S 2021] 括号序列

题目描述

小 w 在赛场上遇到了这样一个题:一个长度为 n n n 且符合规范的括号序列,其有些位置已经确定了,有些位置尚未确定,求这样的括号序列一共有多少个。

身经百战的小 w 当然一眼就秒了这题,不仅如此,他还觉得一场正式比赛出这么简单的模板题也太小儿科了,于是他把这题进行了加强之后顺手扔给了小 c。

具体而言,小 w 定义“超级括号序列”是由字符 ()* 组成的字符串,并且对于某个给定的常数 k k k,给出了“符合规范的超级括号序列”的定义如下:

  1. ()(S) 均是符合规范的超级括号序列,其中 S 表示任意一个仅由不超过 k \bm{k} k 字符 * 组成的非空字符串(以下两条规则中的 S 均为此含义);
  2. 如果字符串 AB 均为符合规范的超级括号序列,那么字符串 ABASB 均为符合规范的超级括号序列,其中 AB 表示把字符串 A 和字符串 B 拼接在一起形成的字符串;
  3. 如果字符串 A 为符合规范的超级括号序列,那么字符串 (A)(SA)(AS) 均为符合规范的超级括号序列。
  4. 所有符合规范的超级括号序列均可通过上述 3 条规则得到。

例如,若 k = 3 k = 3 k=3,则字符串 ((**()*(*))*)(***) 是符合规范的超级括号序列,但字符串 *()(*()*)((**))*)(****(*)) 均不是。特别地,空字符串也不被视为符合规范的超级括号序列。

现在给出一个长度为 n n n 的超级括号序列,其中有一些位置的字符已经确定,另外一些位置的字符尚未确定(用 ? 表示)。小 w 希望能计算出:有多少种将所有尚未确定的字符一一确定的方法,使得得到的字符串是一个符合规范的超级括号序列?

可怜的小 c 并不会做这道题,于是只好请求你来帮忙。

输入格式

第一行,两个正整数 n , k n, k n,k

第二行,一个长度为 n n n 且仅由 ()*? 构成的字符串 S S S

输出格式

输出一个非负整数表示答案对 10 9 + 7 {10}^9 + 7 109+7 取模的结果。

样例 #1

样例输入 #1

7 3
(*??*??

样例输出 #1

5

样例 #2

样例输入 #2

10 2
???(*??(?)

样例输出 #2

19

样例 #3

样例输入 #3

见附件中的 bracket/bracket3.in

样例输出 #3

见附件中的 bracket/bracket3.ans

样例 #4

样例输入 #4

见附件中的 bracket/bracket4.in

样例输出 #4

见附件中的 bracket/bracket4.ans

提示

【样例解释 #1】

如下几种方案是符合规范的:

(**)*()
(**(*))
(*(**))
(*)**()
(*)(**)

【数据范围】

测试点编号 n ≤ n \le n特殊性质
1 ∼ 3 1 \sim 3 13 15 15 15
4 ∼ 8 4 \sim 8 48 40 40 40
9 ∼ 13 9 \sim 13 913 100 100 100
14 ∼ 15 14 \sim 15 1415 500 500 500 S S S 串中仅含有字符 ?
16 ∼ 20 16 \sim 20 1620 500 500 500

对于 100 % 100 \% 100% 的数据, 1 ≤ k ≤ n ≤ 500 1 \le k \le n \le 500 1kn500

区间dp - AC

数据量允许 O ( n 3 ) O(n^3) O(n3)的区间dp.

超级括号序列(“超”)可分为两种:

  1. “套”,外套括号:(),(S),(超),(S超),(超S)。其中()可归为(S)。
  2. “并”:超S超,超超。其中超超可归为超S超。

便于代码实现,预处理 s v ( i , j ) sv(i,j) sv(i,j),子串 [ i , j ] [i,j] [i,j]能否为S。为了将空串归为S,规定 s v ( i , i − 1 ) = t r u e sv(i,i-1)=true sv(i,i1)=true.

定义 f ( i , j ) f(i,j) f(i,j),子串 [ i , j ] [i,j] [i,j]为超的方案数。分两种情况算。
套,分为上文说的四种情况即可计算。定义 h ( i , j ) h(i,j) h(i,j),子串 [ i , j ] [i,j] [i,j]为套的方案数。
并,可能分为好多个超用S连在一起。每次只分一下,使左边变成不可再分割的超,即套,避免重复统计。也就是把超变成套S超。如果再枚举套和S的边界,这意味着在一个状态中枚举两个变量,时间复杂度 O ( n 4 ) O(n^4) O(n4)。发现同一个套S可能在求不同 f ( i , j ) f(i,j) f(i,j)时中被枚举到,不妨定义 g ( i , j ) g(i,j) g(i,j),子串 [ i , j ] [i,j] [i,j]为套S的方案数。时间复杂度降为 O ( n 3 ) O(n^3) O(n3)

ll f(int i, int j);
ll h(int i, int j) {
	if (i >= j) return 0;
	if (s[i] != '(' && s[i] != '?' || s[j] != ')' && s[j] != '?') return 0;
	if (dh[i][j] != -1) return dh[i][j];
	ll ret = (sv[i + 1][j - 1] + f(i + 1, j - 1)) % MOD;
	for (int k = i + 2; k < j - 1; ++k) {
		if (!sv[i + 1][k - 1]) break;
		plusmod(ret, f(k, j - 1));
	}
	for (int k = j - 2; k > i + 1; --k) {
		if (!sv[k + 1][j - 1]) break;
		plusmod(ret, f(i + 1, k));
	}
	return dh[i][j] = ret;
}
ll g(int i, int j) {
	if (i >= j) return 0;
	if (dg[i][j] != -1) return dg[i][j];
	ll ret = 0;
	for (int k = j; k > i; --k) {
		if (!sv[k + 1][j]) break;
		plusmod(ret, h(i, k));
	}
	return dg[i][j] = ret;
}
ll f(int i, int j) {
	if (i >= j) return 0;
	if (df[i][j] != -1) return df[i][j];
	ll ret = h(i, j);
	for (int k = i + 2; k < j; ++k) {
		plusmod(ret, g(i, k - 1) * f(k, j) % MOD);
	}
	return df[i][j] = ret;
}

int main() {
	memset(df, -1, sizeof(df));
	memset(dg, -1, sizeof(dg));
	memset(dh, -1, sizeof(dh));
	
	scanf("%d%d", &n, &l);
	scanf("%s", s + 1);
	
	for (int i = 1; i <= n + 1; ++i) {
		sv[i][i - 1] = 1;
	}
	for (int i = 1; i <= n; ++i) {
		for (int j = i; j < i + l && j <= n; ++j) {
			if (s[j] != '*' && s[j] != '?') break;
			sv[i][j] = 1;
		}
	}
	
	cout << f(1, n) << '\n';
	
	return 0;
}

经验

先别模拟样例,推转移方程;先仔细审题,抽出新定义的对象单独研究

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值